Умоляю Найдите значение выражения.
3х 2 -5х +4 при х=-1;
2.Представте в виде многочлена.
А.(6ху + 8у) – (2ху +9у – 2).
Б.5b(b-c) + c(2b – c)
В.(2х –у)(3у-4х)
Г.2c(3c – 5) – (c-3)(c-7)
3.(4х – 2у) 2 ;( х-у) 2 –х(х +2у)
4. Представить в виде квадрата двучлена.
4х 2 - 20ху + 25у 2
∠С=30°,∠А=90°,∠В=60°
Объяснение:
Дано: AD⊥BC, ВО=ОС. ∠ВАD=∠DАО=∠ОАС
Найти: ∠А,∠В,∠С ΔАВС
Пусть ∠ВАD=∠DАО=∠ОАС=х
1) Рассмотрим ΔВАО. АD - высота. ∠ВАD=∠DАО ⇒ АD - биссектриса.
Если в треугольнике медиана совпадает с биссектрисой, то треугольник равнобедренный. ⇒ΔВАО - равнобедренный. В равнобедренном треугольнике высота является также медианой. ⇒
ВD=DО= ВО= ОС.
2) Дополнительное построение: Проведём ОМ⊥АС.
Рассмотрим прямоугольные треугольники АDО и АМО.
∠DАО=∠ОАС - по условию, АО - общая.
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны.⇒ΔАDО = ΔАМО
Из равенства треугольников следует равенство катетов:
DО = МО = ВО= ОС.
3) Рассмотрим прямоугольный треугольник ОМС (∠М=90°).
Из доказанного выше МО=ОС. Т.е. катет МО равен половине гипотенузы ОС.
Если в прямоугольном треугольнике один из катетов равен половине гипотенузы, то этот катет лежит против угла в 30°.Следовательно ∠С=30°
4) Рассмотрим прямоугольный треугольник АDC(∠D=90°).
По свойству острых углов прямоугольного треугольника
∠DАС=90°-∠С=90°-30°=60°.
По условию ∠DАС=2х ⇒ 2х=60°, х=30°
5) ∠ВАС=3х=3*30°=90°
∠А треугольника АВС = 90°
Так как сумма углов треугольника равна 180°, то ∠В треугольника АВС будет равен: ∠В=180°-∠А-∠С=180°-90°-30°=60°
Данные отрезки параллельны линии пересечения плоскостей, следовательно, параллельны друг другу. АВ║CD.
Расстоянием между параллельными прямыми является длина отрезка, проведенного перпендикулярно к обеим прямым.
Плоскость линейного угла по определению перпендикулярна ребру двугранного угла, значит, перпендикулярна и прямым, которые параллельны этому ребру. ⇒ отрезок АС, перпендикулярный АВ и CD, - искомое расстояние между АВ и CD.
Построим линейный угол МАС двугранного угла между данными плоскостями. В треугольнике АМС угол АМС равен 60°, и по т.косинусов:
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
АС²=8²+5*-2•8•5•cos60°
АС²=89-80•1/2
АС²=49
АС=√49=7 см - это ответ.