Если обозначить длину искомого отрезка за c, получим следующее равенство: (a+c)*h/2 = (c+b)*(H-h)/2 где h - высота трапеции со сторонами a и c, H - высота исходной трапеции со сторонами a и b
с другой стороны, рассматривая подобные треугольники, нетрудно показать, то (b-a)/(с-a) = H/h, то есть H = h*(b-a)/(с-a)
подставим H в первое уравнение: (a+c)*h/2 = (c+b)*(h*(b-a)/(с-a)-h)/2 из чего (выносом h) следует (a+c) = (c+b)*((b-a)/(с-a)-1) или приведением к общему знаменателю суммы в скобках (a+c) = (c+b)*(b-a-с+a)/(с-a) или (с-a)*(a+c) = (c+b)*(b-с) или с^2 - a^2 = b^2 - с^2 или 2*с^2 = b^2 + a^2 или с = корень((b^2 + a^2)/2) - длина промежуточного отрезка равна корню из суммы квадратов a и b деленной на два - или среднеквадратичное из длин оснований
например a = 8, b = 6, с = корень((64+36)/2) = корень(50)
Вариант решения.
Площадь трапеции равна произведению высоты на полусумму оснований.
S=CH•(AD+BC):2
Проведем СЕ || ВD до пересечения с продолжением АD в точке Е. Противоположные стороны ВСЕD параллельны, он- параллелограмм, CE=BD, BC=DE.
Треугольник АСЕ - прямоугольный (СЕ║BD)
Его площадь равна СН•(AD+DE):2/ Нo DE=BC ⇒
Площадь треугольника АСЕ равна площади трапеции.
Площадь прямоугольного треугольника равна половине произведения катетов.
S=AC•BD:2=14•10:2=70 (ед. площади)
---------
Первое решение дано по формуле площади четырехугольника S=d1•d2•sinf, где f- угол между диагоналями.
Нахождение площади трапеции через площадь треугольника также нередко встречается в задачах. Оба решения желательно помнить.
(a+c)*h/2 = (c+b)*(H-h)/2
где h - высота трапеции со сторонами a и c, H - высота исходной трапеции со сторонами a и b
с другой стороны, рассматривая подобные треугольники, нетрудно показать, то (b-a)/(с-a) = H/h, то есть H = h*(b-a)/(с-a)
подставим H в первое уравнение:
(a+c)*h/2 = (c+b)*(h*(b-a)/(с-a)-h)/2
из чего (выносом h) следует
(a+c) = (c+b)*((b-a)/(с-a)-1)
или приведением к общему знаменателю суммы в скобках
(a+c) = (c+b)*(b-a-с+a)/(с-a)
или
(с-a)*(a+c) = (c+b)*(b-с)
или
с^2 - a^2 = b^2 - с^2
или
2*с^2 = b^2 + a^2
или
с = корень((b^2 + a^2)/2) - длина промежуточного отрезка равна корню из суммы квадратов a и b деленной на два - или среднеквадратичное из длин оснований
например a = 8, b = 6, с = корень((64+36)/2) = корень(50)