Упаралелограмі abcd задано координати вершин a(5; 3) і b(-4; 1), а також точки перетину діагоналей o(0; -3). знайдіть а) координати c і d; б) периметр паралелограма abcd.
Пусть ромб АВСD. Высота ВН Смежные углы ромба в сумме равны 180°. Значит <A=180°-120°=60°. В прямоугольном треугольнике АВН угол АВН=30° (сумма острых углов равна 90°). Против угла 30° лежит катет (отрезок 12см), равный половине гипотенузы (стороны ромба). Значит сторона равна 24см. Тогда периметр равен 96см (у ромба 4 равных стороны). Диагонали ромба взаимно перпендикулярны, являются биссектрисами углов ромба и точкой пересечения О делятся пополам. В треугольнике АВD стороны АВ и AD равны (стороны ромба), а угол при вершине равен 60°. Значит треугольник равносторонний и меньшая диагональ равна стороне ромба, то есть 24см. ответ: сторона 24см, периметр 96см, меньшая сторона 24см.
Рассмотрим четырёхугольник ABCD.
По условию задачи имеем:
AB = BC и AD = DC.
Опустим высоту BH треугольника ABC из вершины B на основание AC.
Так как AB = BC, то треугольник ABC - равнобедренный и высота BH является одновременно и медианой, т.е. AH = CH.
Аналогично опустим высоту DG треугольника ADC из вершины D на основание AC.
Так как AD = DC, то треугольник ADC - равнобедренный и высота DG является одновременно медианой, т.е. AG = CG.
Так как AH = CH и AG = CG, то точки H и G совпадают.
BH и DG перпендикулярны AC и точки H и G совпадают.
Следовательно, BH и DG лежат на прямой перпендикулярной AC и BD является диагональю четырехугольника ABCD.
Итак получили, что диагонали AC и ВD перпендикулярны, что и требовалось доказать.
можете не благодарить
Смежные углы ромба в сумме равны 180°.
Значит <A=180°-120°=60°.
В прямоугольном треугольнике АВН угол АВН=30° (сумма острых углов равна 90°). Против угла 30° лежит катет (отрезок 12см), равный половине гипотенузы (стороны ромба). Значит сторона равна 24см.
Тогда периметр равен 96см (у ромба 4 равных стороны).
Диагонали ромба взаимно перпендикулярны, являются биссектрисами углов ромба и точкой пересечения О делятся пополам.
В треугольнике АВD стороны АВ и AD равны (стороны ромба), а угол при вершине равен 60°. Значит треугольник равносторонний и меньшая диагональ равна стороне ромба, то есть 24см.
ответ: сторона 24см, периметр 96см, меньшая сторона 24см.