Упрямокутному трикутнику мрк вершини гострих кутів р і к та середина f одного з катетів належать площині a. доведіть , що всі сторони трикутника належать площині a.
А). так как км = мр то углы мкр и кмр равны , у трапеции основания параллельны а значит углы мрк равен углу ркт так как они параллельные а значит углы мкр и ркт равны а значит что диагональ кр является биссектрисой угла к (углы ркт равен углу ртк)
отрезок км равен мр и равны они высоте так как они катеты равнобедренного треугольника т высота в прямоугольной трапеции равно стороне км треугольник крт равнобедренный а значит высота рс явл и биссектрисой а значит делит прямой угол крт пополам на углы по 45°, угол рст 90° так как рс высота а значит угол РТС равен 45° и значит треугольник рст равнобедренный и катеты рс и ст равны между собой и равны 6 кс равен мр так как явл сторонами квадраты которые равны 6
Сначала найдём высоту треугольника, лежащего в основании (она же является стороной треугольника-сечения). Треугольник в основании равносторонний, так как пирамида правильная. Применим одну из формул высоты равностороннего треугольника: h= а × √3/2 , где а - сторона. h= 9√3 × √3 /2 = 9 × 3 / 2 = 13,5 Теперь найдём параметры центра треугольника в основании пирамиды - это и будет та точка, в которой высота пирамиды делит высоту основания, образуя с ней прямой угол. Это важно для вычисления площади неправильного треугольника, которым и является искомое сечение пирамиды. В равностороннем треугольнике медианы пересекаются в центре, деля его высоты в соотношении 2:1 - 2 при угле, 1 при стороне. 13,5 :3 =4,5 - часть высоты от центра до стороны. 4,5 ×2 = 9 - часть высоты от угла до центра Таким образом мы имеем гипотенузу 15 и катет 9 прямоугольного треугольника, являющегося одной из двух частей сечения пирамиды. По теореме Пифагора найдём второй катет (Х-икс), являющийся высотой пирамиды. Х=√ (15²-9²)= √(225 - 81) = √144 = 12 Теперь мы имеем все данные для вычисления площади сечения. Сечение состоит из 2х прямоугольных треугольников (треугольник сечения, разделенный высотой пирамиды на два других). А площадь прямоугольного треугольника равна 1/2 произведения сторон, прилежащих к прямому углу. S1=12×9 /2 =54 S2=12×4,5 /2 =27 S1 + S2 = 54+27=81
(углы ркт равен углу ртк)
отрезок км равен мр и равны они высоте так как они катеты равнобедренного треугольника т высота в прямоугольной трапеции равно стороне км
треугольник крт равнобедренный а значит высота рс явл и биссектрисой а значит делит прямой угол крт пополам на углы по 45°, угол рст 90° так как рс высота а значит угол РТС равен 45° и значит треугольник рст равнобедренный и катеты рс и ст равны между собой и равны 6
кс равен мр так как явл сторонами квадраты которые равны 6
ответ на б: основания равны 6 и 12
h= 9√3 × √3 /2 = 9 × 3 / 2 = 13,5
Теперь найдём параметры центра треугольника в основании пирамиды - это и будет та точка, в которой высота пирамиды делит высоту основания, образуя с ней прямой угол. Это важно для вычисления площади неправильного треугольника, которым и является искомое сечение пирамиды.
В равностороннем треугольнике медианы пересекаются в центре, деля его высоты в соотношении 2:1 - 2 при угле, 1 при стороне.
13,5 :3 =4,5 - часть высоты от центра до стороны.
4,5 ×2 = 9 - часть высоты от угла до центра
Таким образом мы имеем гипотенузу 15 и катет 9 прямоугольного треугольника, являющегося одной из двух частей сечения пирамиды. По теореме Пифагора найдём второй катет (Х-икс), являющийся высотой пирамиды.
Х=√ (15²-9²)= √(225 - 81) = √144 = 12
Теперь мы имеем все данные для вычисления площади сечения. Сечение состоит из 2х прямоугольных треугольников (треугольник сечения, разделенный высотой пирамиды на два других). А площадь прямоугольного треугольника равна 1/2 произведения сторон, прилежащих к прямому углу.
S1=12×9 /2 =54 S2=12×4,5 /2 =27
S1 + S2 = 54+27=81