Уровень А 62. Из предложенных утверждений выберите и докажите тео- рему, которая является обратной к теореме противоположные стороны параллелограмма равны: а) если противоположные сто- роны четырехугольника равны, то он является параллелограм- мом; б) если хотя бы две стороны четырехугольника равны, то это параллелограмм; в) если в четырехугольнике противоположные стороны не равны, то он не является параллелограммом.
Объяснение:
а) Пусть СХ=х , тогда ХД=7-х.
Произведение отрезков одной хорды равно произведению отрезков другой хорды ⇒
СХ*ХД=АХ*ХВ,
х*(7-х)=2*6 , 7х-х²=12 ,
х²-7х+12=0, D=49-48=1>0 ,
По т. Виета х₁+ х₂=7
х₁* х₂=12 ⇒ х₁=4, х₂=3 .
Если СХ=4 , тогда ХД=7-4=3.
Если СХ=3 , тогда ХД=7-3=4.
б) ∪ АД=80°, ∪ СВ=48°.∠АХС=180°-∠АХД. Найдем угол ∠АХД по теореме : "Величина угла, образованного пересекающимися хордами, равна половине суммы величин дуг, заключённых между его сторонами " ⇒
∠АХД=(48°+80°):2=64°.
∠АХС=180°-64°=116°.
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)