Пусть x(км/ч) - средняя скорость второго гонщика; y(км/ч) - средняя скорость первого гонщика; Тогда скорость удаления равна (y-x) км/ч; Так как первый гонщик в первый раз обогнал второго на круг через 12 минут, то получаем уравнение: 4/(у−x)=12/60, y−x=20; у=20+х; Так как всего каждый из гонщиков проехал 50*4= 200 км и на финиш первый пришел раньше второго на 30 минут, то получаем второе уравнение: 200/х−200/y=30/60; 400/х=1 + 400/у; 400/х=(400+у)/у; х=400у/(400+у); с учетом того, что y = 20+ x, получаем: х=400(20+х)/(420+х); х^2+420х=400х+8000; х^2+20х-8000=0; решая, находим х=80; ответ: 80 км/ч
Начертив это, вы увидите, что угол АДС = 60 град. Рассматривая треуг АДС, вы увидите, что он прямоуг. , и и угол ДСА = 30 град (то есть угол С в большом тр-ке АВС будет равен 60, раз это биссектриса) . Итак в треуг АДС косинус 60 = 1/2, то есть отношение АД к ДС = 1/2, откуда АД=4. Раз ДС=8, тогда АС = корень из 48 (т. пифагора) . Поскольку угол С в тр. АВС равен 60 градусам, как мы установили, то косинус 60 = АС/ВС=1/2, а значит, ВС=2корня из 48. Теперь в тр. АВС мы знаем 2 стороны и по Пифагору находим эту АВ.. .(2корня из 48) в квадрате минус (корень из 48)в квадрате = 4*48- 48 = 144, это АВ в квадрате. Извлекаем корень, и получаем 12.
Итак в треуг АДС косинус 60 = 1/2, то есть отношение АД к ДС = 1/2, откуда АД=4. Раз ДС=8, тогда АС = корень из 48 (т. пифагора) . Поскольку угол С в тр. АВС равен 60 градусам, как мы установили, то косинус 60 = АС/ВС=1/2, а значит, ВС=2корня из 48.
Теперь в тр. АВС мы знаем 2 стороны и по Пифагору находим эту АВ.. .(2корня из 48) в квадрате минус (корень из 48)в квадрате = 4*48- 48 = 144, это АВ в квадрате. Извлекаем корень, и получаем 12.