Условие задания: Дан треугольник ABC, известно, что угол C— прямой, СА = 3 см, CB = 4 см. Изобрази соответствующий рисунок. Вычисли AB и напиши тригонометрические соотношения угла В. ответ: AB в — = 0 СМ. tgB — sinB ОО cosB = 음 (Дроби не сокращай.)
1)у прямоугольника диагонали равны и прямоугольник это параллелограм из чего следует точка пересечения диагоналей(точка О) делит диагонали на 4 равных отрезка DO=OB=CO=AO из чего следует
треугольник АBO равнобедренный из чего следует что угол ABO = углу BAO = 36 из этого мы можем найти угол АОB = 180 - угол BAO - угол АBO = 180-72 =108
угол АОB = COD как вертикально аналогично с углами AOD и BOC
сумма 4 вертикальных углов 360 градусов из чего следует чтобы найти угол АОD нам надо (360-АОB-COD)/2=(360-216)/2=72градуса
2) у прямоугольной трапеции всегда 2 угла по 90 градусов и 20 градусов нам дан угол по условию а последний угол = 360-(первый угол+второй угол+третий угол) = 360-(90+90+20)=160
Сумма всех углов четырехугольника равна 360градусов
3) стороны параллелограма относятся 1:2 значит мы можем взять меньшую сторону за x, а большую за 2x
у параллеграма противоположные стороны равны и нам дан периметр из чего следует уравнение
x+x+2x+2x=30
6x=30
x=5
меньшая сторона равна 5
а большая следовательно 10
4)у параллелограма противоположные стороны параллельны!
нам дана биссектриса KE которая является секущей
MN и KP из чего следует что угол МЕK = углу EKP как накрест лежащие углы. Из чего следует треугольник KME равнобедренный, а по условию нам дана сторона KM =8 значит МЕ тоже равна 8
значит большая сторона параллелограма = МЕ + ЕN = 8+4=12
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
1)72градуса
2)20,90,90,160
3)5,10
4)40
Объяснение:
1)у прямоугольника диагонали равны и прямоугольник это параллелограм из чего следует точка пересечения диагоналей(точка О) делит диагонали на 4 равных отрезка DO=OB=CO=AO из чего следует
треугольник АBO равнобедренный из чего следует что угол ABO = углу BAO = 36 из этого мы можем найти угол АОB = 180 - угол BAO - угол АBO = 180-72 =108
угол АОB = COD как вертикально аналогично с углами AOD и BOC
сумма 4 вертикальных углов 360 градусов из чего следует чтобы найти угол АОD нам надо (360-АОB-COD)/2=(360-216)/2=72градуса
2) у прямоугольной трапеции всегда 2 угла по 90 градусов и 20 градусов нам дан угол по условию а последний угол = 360-(первый угол+второй угол+третий угол) = 360-(90+90+20)=160
Сумма всех углов четырехугольника равна 360градусов
3) стороны параллелограма относятся 1:2 значит мы можем взять меньшую сторону за x, а большую за 2x
у параллеграма противоположные стороны равны и нам дан периметр из чего следует уравнение
x+x+2x+2x=30
6x=30
x=5
меньшая сторона равна 5
а большая следовательно 10
4)у параллелограма противоположные стороны параллельны!
нам дана биссектриса KE которая является секущей
MN и KP из чего следует что угол МЕK = углу EKP как накрест лежащие углы. Из чего следует треугольник KME равнобедренный, а по условию нам дана сторона KM =8 значит МЕ тоже равна 8
значит большая сторона параллелограма = МЕ + ЕN = 8+4=12
найдем периметр = 12×2 + 8×2=40
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.