Дано: (СА; γ)=(СВ; γ)=α; АСВ=β Найти: sin(ABC; γ) Решение: Чтобы найти угол между двумя плоскостями, нужно провести в каждой плоскости перпендикуляр к линии пересечения этих плоскостей, угол между этим перпендикулярами и будет углом между плоскостями. Проведем СН перпендикулярно плоскости γ и СМ - биссектрису угла АСВ. Так как углы наклона СА и СВ к плоскости γ равны, то СА=СВ, следовательно треугольник АСВ равнобедренный и СМ является также медианой и высотой. Аналогично, проекции равных отрезков на плоскость γ равны между собой НА=НВ, а НМ является биссектрисой, медианой и высотой в равнобедренном треугольнике АНВ. Распишем искомый синус угла:
Чтобы найти СН сделаем планиметрическую картинку треугольника АСН и запишем синус известного угла CAH:
Чтобы найти СМ аналогично изобразим картинку треугольника АСВ. Так как СМ - биссектриса, то угол АСМ равен (β/2). Рассмотрим треугольник АСМ:
Подставляем найденные величины в формулу для синуса искомого угла:
Я нарочно не напишу ни одной "формулы" :). Высота к гипотенузе делит прямоугольный треугольник на два, ему же и подобные (и - между собой). Один из этих треугольников имеет катеты 27 и 36, то есть это треугольник, подобный (3,4,5) с коэффициентом подобия 9. Следовательно, один из катетов "главного" треугольника равен 45. Это - больший из катетов, поскольку его проекция на гипотенузу больше высоты. (Примечание 1 Не хотелось напоминать, но высота равна среднему геометрическому отрезков гипотенузы, на которые она её делит, поэтому если один отрезок больше высоты, то второй - меньше. А у меньшего катета - меньшая проекция на гипотенузу. - а так ли это? :) ) (Примечание 2 То есть коэффициент подобия "главного" треугольника 45/4; и его стороны 135/4; 45; 225/4; Но искать стороны не обязательно, поскольку) В "египетском" треугольнике периметр равен утроенному большему катету. ответ 135
Найти: sin(ABC; γ)
Решение: Чтобы найти угол между двумя плоскостями, нужно провести в каждой плоскости перпендикуляр к линии пересечения этих плоскостей, угол между этим перпендикулярами и будет углом между плоскостями.
Проведем СН перпендикулярно плоскости γ и СМ - биссектрису угла АСВ. Так как углы наклона СА и СВ к плоскости γ равны, то СА=СВ, следовательно треугольник АСВ равнобедренный и СМ является также медианой и высотой. Аналогично, проекции равных отрезков на плоскость γ равны между собой НА=НВ, а НМ является биссектрисой, медианой и высотой в равнобедренном треугольнике АНВ.
Распишем искомый синус угла:
Чтобы найти СН сделаем планиметрическую картинку треугольника АСН и запишем синус известного угла CAH:
Чтобы найти СМ аналогично изобразим картинку треугольника АСВ. Так как СМ - биссектриса, то угол АСМ равен (β/2). Рассмотрим треугольник АСМ:
Подставляем найденные величины в формулу для синуса искомого угла:
ответ: sin(α)/cos(β/2)
Высота к гипотенузе делит прямоугольный треугольник на два, ему же и подобные (и - между собой). Один из этих треугольников имеет катеты 27 и 36, то есть это треугольник, подобный (3,4,5) с коэффициентом подобия 9. Следовательно, один из катетов "главного" треугольника равен 45. Это - больший из катетов, поскольку его проекция на гипотенузу больше высоты. (Примечание 1 Не хотелось напоминать, но высота равна среднему геометрическому отрезков гипотенузы, на которые она её делит, поэтому если один отрезок больше высоты, то второй - меньше. А у меньшего катета - меньшая проекция на гипотенузу. - а так ли это? :) )
(Примечание 2 То есть коэффициент подобия "главного" треугольника 45/4; и его стороны 135/4; 45; 225/4; Но искать стороны не обязательно, поскольку)
В "египетском" треугольнике периметр равен утроенному большему катету.
ответ 135