библиотека материалов скачать материал целиком можно бесплатно по ссылке внизу страницы. муниципальное бюджетное общеобразовательное учреждение «шумячская средняя школа имени в.ф. алешина»рассмотрено утверждено на заседании шмо приказом по школе № от протокол № от руководитель шмо: директор школы:аттестационные материалы промежуточной аттестации 2015-2016 учебный год по для 7 классовчасть а 1. если угол аос = 75 °, угол вос = 105°, то эти углы : а) смежные б) вертикальные в) определить невозможно 2. определите вид треугольника, если сумма двух его углов равна третьему углу? а) остроугольный в) прямоугольный б) тупоугольный г) определить невозможно 3. точка с принадлежит отрезку ав. чему равна длина отрезка ав, если ас=3,6 см, вс=2,5 см а) 1,1 б) 7,2 в) 6,1 г) 5 4. известны стороны равнобедренного треугольника: 2 см и 5 см. чему равен его периметр? а) 9 б) 6 в) 12 г) 15 5. сумма двух односторонних углов, образованных при пересечении прямых m и n секущей k, равна 148°. определить взаимное расположение прямых m и n. а) пересекаются б) параллельны в) такая ситуация невозможна 6. в прямоугольном треугольнике один из острых углов равен 25°. чему равен второй острый угол? а) 65° б) 25° в) 155° г) 90° 7-8. углы треугольника относятся как 1: 1: 7. определите вид данного треугольника. по углам: по сторонам: а)остроугольный а). разносторонний б)прямоугольный б) равносторонний в)тупоугольный в).равнобедренный 9. треугольника, с такими сторонами не существует: а) 1; 2; 3; б) 5; 5; 6; в) 5; 4; 3; г) 20; 21; 22 10. выберите верное утверждение. а)через любую точку можно провести только одну прямую б) сумма смежных углов равна 1800 в) если при пересечении двух прямых третьей прямой соответственные углы составляют в сумме 1800, то эти две прямые параллельны г)через любые две точки проходит более одной прямой
Пусть радиус красной окружности R = x, тогда КМ = KC + CM = 21 + 42 = 63, KU = FU + KF = x + 21, MU = UE + ME = x + 42, UO = DO - DU = 63 - x
Применим теорему косинусов для ΔКМU:
KU² = KM² + UM² - 2•KM•UM•cos∠KMU
(x + 21)² = 63² + (x + 42)² - 2•63•(x + 42)•cos∠KMU
x² + 42x + 441 = 3969 + x² + 84x + 1764 - 126•(x + 42)•cos∠KMU
126•(x + 42)•cos∠KMU = 42x + 5292 ⇒ cos∠KMU = (x+126)/3(x+42)
Теперь ещё раз применим теорему косинусов уже для ΔUOM:
UO² = OM² + UM² - 2•OM•UM•cos∠OMU
(63 - x)² = 21² + (x + 42)² - 2•21•(x + 42)•cos∠OMU
x² - 126x + 3969 = 441 + x² + 84x + 1764 - 42•(x + 42)•cos∠OMU
42•(x + 42) = 210x - 1764 ⇒ cos∠OMU = (5x - 42)/(x + 42)
cos∠KMU = cos∠OMU ⇒ (x + 126)/3(x + 42) = (5x - 42)/(x + 42)
x + 126 = 3•(5x - 42) ⇔ 14x = 252 ⇔ R = x = 18 ⇒ D = 36
ответ: 36