Установіть відповідність між вектором(1-4) і перпендикулярним йому вектором (А-Д) 1. (-3;2;1) 2. (2;-1;3) 3. (4;-1;1) 4. (-1;-2;1) A. (3;0;-2) Б. (3;5;-7) B. (6;-2;2) Г. (0;3;-1) Д. (2;3;0)
Пусть ABC - прямоугольный треугольник c гипотенузой AB, катетами BC и АС=18 см. Угол CAB = 30 градусов, катет BC противолежащий углу 30 градусов равен половине гипотенузы. AB = 2* BC
Треугольник DAB - прямоугольный. Угол DBA = 30 градусов, так как угол В 60 градусов по условию и угол DBC=30 градусов. DB= 8 . В прямоугольном треугольнике против угла в 30 градусов лежит кактет равный половине гипотенузы. Значит гипотенуза в два раза больше катета. Обознгачим основание перпендикуляра из точки D к стороне СВ буквой К В треугольнике DKB угол DKB= 90 градусов, угол KBD = 30 градусов, Гипотенуза DB=8, значит DK = 4 В треугольнике CDK угол DCK=30 градусов, катет DK=4, значит гипотенуза DC=8 И потому АС = CD +DA=8+4=12
Угол CAB = 30 градусов, катет BC противолежащий углу 30 градусов равен половине гипотенузы. AB = 2* BC
По теореме Пифагора:
AB² = AC² + BC²
BC² = AB² - AC²
BC² = (2* BC)² - AC²
BC² = 4* BC² - AC²
3 * BC² = AC²
BC² = AC² / 3
BC² = 18² / 3 = 324 / 3 = 108
BC = √108 = √(6*6*3) = 6√3 (см)
AC = 2 * 6√3 = 12√3 (см)
Угол ABC = 180 - 90 - 30 = 60 градусов Угол ACB - прямой. Биссектриса (BD) делит угол ABC пополам. Угол DBC = 30 град, угол BDC = 60 град ⇒ треугольники ABC и BDC подобны по трем углам.
У подобных треугольников стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.
BC AC
=
DC BC
6√3 12√3
=
DC 6√3
Свойство пропорции - произведение крайних членов равно произведению средних
6√3 * 6√3 = DC * 12√3
108 = DC * 12√3
DC = 108 / 12√3
DC = 9 / √3 = 9√3 / 3 = 3√3 ≈5,2 (см)
AD = AC - DC
AD = 18 - 3√3 ≈ 18 - 5,2 ≈ 12,8 (см)
Биссектриса острого угла треугольника делит бОльший катет на отрезки 12,8 см и 5,2 см
DB= 8 . В прямоугольном треугольнике против угла в 30 градусов лежит кактет равный половине гипотенузы. Значит гипотенуза в два раза больше катета.
Обознгачим основание перпендикуляра из точки D к стороне СВ буквой К
В треугольнике DKB угол DKB= 90 градусов, угол KBD = 30 градусов, Гипотенуза DB=8, значит DK = 4
В треугольнике CDK угол DCK=30 градусов, катет DK=4, значит гипотенуза DC=8
И потому АС = CD +DA=8+4=12