я так понял, что Вас интересует второй вариант. Вот его решение
Диагональным сечением, площадь которого надо найти, является равнобедренный треугольник, т.к. боковые ребра оказываются все равными между собой, что следует из равенства проекций этих ребер, которые являются половинами равных диагоналей прямоугольника, лежащего в основании.
Т.к. высота пирамиды - это и высота диагонального сечения, то, зная основание треугольника- это диагональ прямоугольника и по теореме Пифагора она равна √(6²+8²)=√(36+64)=√100=10(см), можно найти площадь диагонального сечения. Для этого основание треугольника 10 см умножим на высоту треугольника 8 см и результат поделим на 2
Получим (10*8)/2=40 (см²)
ответ 40 см²
рассуждая аналогично, можем решить и первый вариант.
Находим диагональ прямоугольника по теореме Пифагора
√(8²+15²)=√(64+225)=√289=17, тогда искомая площадь
Т.к. все боковые ребра пирамиды равны, то основание высоты - это центр окружности, описанной около прямоугольного треугольника, пирамиды - середина гипотенузы, т .к. тогда и проекции всех боковых ребер тоже равны, (это расстояния от середины гипотенузы - центра описанной около прямоугольного треугольника окружности, до вершин треугольника, радиус такой окружности равен половине гипотенузы, и так как в прямоуг. треуг. самой большой стороной является гипотенуза, то ее половина равна 8/2=4.) Дальше - один ход - к прямоугольному треугольнику, в котором гипотенузой является наклонная, равная 5см, известным катетом - проекция наклонной на плоскость основания, равная 4 см , нужно найти второй катет, который и есть высотой пирамиды. ПО теореме Пифагора он равен √(5²-4²)=√(25-16)=√9=3(см)
я так понял, что Вас интересует второй вариант. Вот его решение
Диагональным сечением, площадь которого надо найти, является равнобедренный треугольник, т.к. боковые ребра оказываются все равными между собой, что следует из равенства проекций этих ребер, которые являются половинами равных диагоналей прямоугольника, лежащего в основании.
Т.к. высота пирамиды - это и высота диагонального сечения, то, зная основание треугольника- это диагональ прямоугольника и по теореме Пифагора она равна √(6²+8²)=√(36+64)=√100=10(см), можно найти площадь диагонального сечения. Для этого основание треугольника 10 см умножим на высоту треугольника 8 см и результат поделим на 2
Получим (10*8)/2=40 (см²)
ответ 40 см²
рассуждая аналогично, можем решить и первый вариант.
Находим диагональ прямоугольника по теореме Пифагора
√(8²+15²)=√(64+225)=√289=17, тогда искомая площадь
(17*2)/2=17 (см²)
Т.к. все боковые ребра пирамиды равны, то основание высоты - это центр окружности, описанной около прямоугольного треугольника, пирамиды - середина гипотенузы, т .к. тогда и проекции всех боковых ребер тоже равны, (это расстояния от середины гипотенузы - центра описанной около прямоугольного треугольника окружности, до вершин треугольника, радиус такой окружности равен половине гипотенузы, и так как в прямоуг. треуг. самой большой стороной является гипотенуза, то ее половина равна 8/2=4.) Дальше - один ход - к прямоугольному треугольнику, в котором гипотенузой является наклонная, равная 5см, известным катетом - проекция наклонной на плоскость основания, равная 4 см , нужно найти второй катет, который и есть высотой пирамиды. ПО теореме Пифагора он равен √(5²-4²)=√(25-16)=√9=3(см)
ответ 3см