громко так сформулировано "установите зависимость".
1. В правильном треугольнике центры вписанной и описнной окружностей совпадают с ортоцентром (точкой пересевчения медиан). Поэтому отрезок МЕДИАНЫ от точки пересечения до вершины - это радиус описанной окружности R, а отрезок этой же медианы от точки пересечения медиан до стороны - это радиус вписанной окружности r.
Поэтому R = 2r (медианы в точке пересечения делятся в отношении )
2. В квадрате (правильном четырехугольнике) центры обеих окружностей совпадают с точкой пересечения диагоналей. Поэтому радиус вписанной окружности равен половине стороны квадрата, а радиус описанной окружности - половине диагонали, то есть
громко так сформулировано "установите зависимость".
1. В правильном треугольнике центры вписанной и описнной окружностей совпадают с ортоцентром (точкой пересевчения медиан). Поэтому отрезок МЕДИАНЫ от точки пересечения до вершины - это радиус описанной окружности R, а отрезок этой же медианы от точки пересечения медиан до стороны - это радиус вписанной окружности r.
Поэтому R = 2r (медианы в точке пересечения делятся в отношении )
2. В квадрате (правильном четырехугольнике) центры обеих окружностей совпадают с точкой пересечения диагоналей. Поэтому радиус вписанной окружности равен половине стороны квадрата, а радиус описанной окружности - половине диагонали, то есть
R/r = корень(2).