Проведём отрезок из точки В в точку С под прямым углом. угол САD=90-60=30° сторона лежащая против угла в 30° равна половине гипатенузы, следовательно ВС=8/2=4(см) теперь по теореме Пифагора(т.к. мы сделали прямоугольный треугольник) АС²=АВ²+ВС² сейчас выражаем катет АВ из данной формулы: АВ²=АС²-ВС² АВ²=8²-4²=64-16=48 АВ=√48=4√3(см) проведём также отрезок СD к плоскости под прямым углом, и получим прямоугольник ABCD, где все углы равны 90°, и по свойствам прямоугольников противолежащие стороны равны, ВС=AD=4(см) ответ:длина перпендикуляра АВ= 4√3 см, а длина проекции АD=4 см. (фото чертежа прикрепил)
угол САD=90-60=30°
сторона лежащая против угла в 30° равна половине гипатенузы, следовательно ВС=8/2=4(см)
теперь по теореме Пифагора(т.к. мы сделали прямоугольный треугольник)
АС²=АВ²+ВС²
сейчас выражаем катет АВ из данной формулы:
АВ²=АС²-ВС²
АВ²=8²-4²=64-16=48
АВ=√48=4√3(см)
проведём также отрезок СD к плоскости под прямым углом, и получим прямоугольник ABCD, где все углы равны 90°, и по свойствам прямоугольников противолежащие стороны равны, ВС=AD=4(см)
ответ:длина перпендикуляра АВ= 4√3 см, а длина проекции АD=4 см.
(фото чертежа прикрепил)
Высота равностороннего треугольника равна 25√3. Найдите его периметр.
Решение:
1) Так как треугольник равносторонний, то ∠A = ∠B = ∠C = 180° : 3 = 60°.
2) Рассмотрим треугольник ABH (∠H = 90)
∠B = 180° - 90° - 60° = 30°
3) AH = половине AB = AB/2 - Катет, лежащий против угла в 30°.
AB2 = (25√3)2 + (AB/2)2
AB2 = 1875 + AB2/4
AB2 - AB2/4= 1875
(3AB2)/4 = 1875
Крест-накрест:
3AB2 = 4 * 1875
3AB2 = 7500
AB2 = 7500 / 3
AB2 = 2500
AB = √2500
AB = 50
4) Периметр равен сумме всех сторон, так как треугольник имеет 3 стороны и в данном случа они все равны, то:
P = 50 + 50 + 50 = 150
ответ: 150