Найдем величину тупого угла ромба. (360-60*2):2=120. Т.к. сумма всех углов равна 360, и противоположные углы равны. Проведем диагональ ромба, соединяющую два его тупых угла. Диагональ ромба является биссектриссой. Т.о. эта диагональ разделила наш ромб на два раносторонних треугольника, т.к. все углы получились по 60 градусов, значит треугольник равносторонний. В равностороннем треугольнике высота является медианой. Медиана делит противоположную сторону на два равных отрезка Значит длины отрезков на которые высота разделила сторону равны 32:2=16
В прямоугольной трапеции ABCD заданы основания AD = 8 и BC = 2 .Биссектриса прямого угла трапеции пересекает сторону CD в точке K, при этом CK : KD =1: 2 . Найдите площадь трапеции.Биссектриса ВН угла при вершине равнобедренного тр-ка является его высотой и медианой. Прямоугольный тр-к АВН равнобедренный, так как ВН=АН. АВ=3, тогда по Пифагору 2*ВН² =АВ² = 9 и ВН = 3√2/2. Тогда площадь тр-ка АВС Sabc = 0,5*АС*ВН=АН*ВН=ВН² = 18/4 = 9/2.Но эта же площадь равна 0,5*ВС*АК=9/2. Тогда АК = 9/3 =3. Второй вариант решения: Если треугольник АВН - равнобедренный (АН=ВН), то <A=45°. Тогда и <С=45° (так как тр-к АВС - равнобедренный - дано), а <В=90°. Следовательно, высота АК, опущенная на боковую сторону ВС, совпадает со стороной АВ (АВ - катет треугольника АВС) и равна этой стороне, то есть АК = 3. ответ в приложенном рисунке
Проведем диагональ ромба, соединяющую два его тупых угла. Диагональ ромба является биссектриссой. Т.о. эта диагональ разделила наш ромб на два раносторонних треугольника, т.к. все углы получились по 60 градусов, значит треугольник равносторонний. В равностороннем треугольнике высота является медианой. Медиана делит противоположную сторону на два равных отрезка Значит длины отрезков на которые высота разделила сторону равны 32:2=16
Второй вариант решения:
Если треугольник АВН - равнобедренный (АН=ВН), то <A=45°. Тогда и <С=45° (так как тр-к АВС - равнобедренный - дано), а <В=90°. Следовательно, высота АК, опущенная на боковую сторону ВС, совпадает со стороной АВ (АВ - катет треугольника АВС) и равна этой стороне, то есть АК = 3.
ответ в приложенном рисунке