Треугольник ABC с прямым углом A. Биссектриса BL делит сторону AC на отрезки AL=2.4 см и LC=2.6 см. Это так, потому что есть теорема, что биссектриса делит сторону на отрезки, отношение которых прямопропорционально отношениям длин сторон. Т.е. в данном случае BC/AB=LC/AC. А т.к. гипотенуза больше катета, то именно LC=2.6 см. Значит, BC/AB=2.6/2.4=13/12. Пусть AB=x, тогда BC=13/12x. По теореме Пифагора: BC^2=AC^2+AB^2=x^2 (умножить на) 169/144=x^2+(2.4+2.6)^2=x^2 (умножить на) 169/144+25. Решаем уравнение и получаем, что x^2=144. Значит, x=12=AB, значит, BC=13. Считаем периметр - AB+BC+CA=12+13+5=30см.
Внешний угол - острый => смежный внутренний угол - тупой (сумма смежных углов 180°). Угол при основании равнобедренного треугольника не может быть тупым (углы при основании равнобедренного треугольника равны, сумма двух тупых углов больше 180°, сумма углов треугольника 180°) => тупой угол лежит против основания. В треугольнике против большего угла лежит большая сторона => основание больше боковой стороны.
b - основание, a - боковые стороны
a=b-5
P= 2a+b <=> 2(b-5) +b =26 <=> b =36/3 =12
a=12-5=7
Высота к основанию в равнобедренном треугольнике является медианой.
cos(A)= b/2 /a =6/7
∠A=∠C= arccos(6/7) =31°
∠B=180°-2∠A =180°-62° =118°