В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
HeeeeelpPlz
HeeeeelpPlz
16.12.2020 08:06 •  Геометрия

В Δ АВС проведена биссектриса BD ∠А= 75° , ∠С= 35° а) Докажите что Δ ВDC равнобедренный

б) Сравните отрезки АВ и DC

Показать ответ
Ответ:
Aslanty
Aslanty
08.09.2021 04:48

Это хоть на задачи похоже.

 

4. Центры окружностей образуют равнобедренный треугольник со сторонами 

24 + 15 = 39 (это две боковые стороны) и 15 + 15 = 30 (это основание). Высота к основанию легко находится, поскольку вместе с половиной основания 15 и боковой стороной 39 образует прямоугольный треугольник (15, 36, 39) (Пифагорова тройка). Высота равна 36.

Центр "внутренней" окружности расположен на этой высоте, пусть его радиус r. Расстояния от него до вершин (центров остальных окружностей) равны 15 + r, 15 + r, 24 + r. Поэтому расстояние от этого центра до основания (линии центров окружностей радиуса 15) равно 36 - (24 + r) = 12 - r;

Отсюда (15 + r)^2 = 15^2 + (12 - r)^2; 2(15 + 12)r = 12^2; r = 72/27;

 

5. Если продлить сторону квадрата, из вершины которой выходит касательная, до ВТОРОГО пересечения с окружностью, и обозначить эту хорду х, то 

2^2 = 1(x+1); x = 3; 

в результате имеются две взаимно перпендикулярные хорды длины 1 и 3, ясно, что отрезок, соединяющий их НЕ ОБЩИЕ концы - диаметр, то есть

D^2 = 1^2 + 3^2 = 10; R^2 = 5/2;

 

2. Если обозначить H - высота трапеции ABCD, h - высота трапеции MNCB, m = MN; a = AD; b = BC; то

(m + b)h = (a + b)H/2;

(m + a)(H - h) = (a + b)H/2; 

(Это все потому, что площади трапеций NMCB и ADMN равны половине площади ABCD) 

Пусть x = h/H; тогда

(m + b)x = (a + b)/2;

(m + a)(1 - x) = (a + b)/2;

Складывая оба уравнения, легко находим

x = (m - b)/(a - b);

m^2 = (a^2 + b^2)/2;

подставляем числа из условия, получаем m = 5;

 

1. Площадь ЧЕТЫРЕХУГОЛЬНИКА ABMN равна 7*8/2 = 28;

Если обозначить AC = b; BC = a, то

Площадь треугольника АВС равна S = absin(C)/2

Площадь треугольника MNС равна (a/2)b(1-0,4)sin(C)/2 = 3S/10;

Поэтому площадь ABMN равна 7S/10 = 28; откуда S = 40;

 

3. самая прикольная задачка.

Пусть CD = b; СЕ = a;

Теорема синусов для тр-ка ADC (Ф - угол ВАС)

b/sinФ = AD/sin30 = 2; b = 2sinФ;

Теорема синусов для тр-ка ACE 

a/sinФ = AE/sin120 = 2√3; a = 2√3sinФ;

Треугольник DCE прямоугольный, с гипотенузой DE  =2;

a^2 + b^2 = 4;

Откуда sinФ = 1/2; отсюда сразу следует, что треугольник АСЕ равнобедренный с углом при вершине 120 (при основании - два угла по 30). Но это в решении не пригождается, так как h - высоту АВС, то есть расстояние от С до АВ, проще всего найти из треугольника CDE

ab = 2h; но уже найдены b = 1 и а = √3; поэтому h = √3/2;

площадь АВС равна (√3/2)*(4√3)/2 = 3.

 

0,0(0 оценок)
Ответ:
bogdOJ
bogdOJ
31.01.2022 00:46

громко так сформулировано "установите зависимость".

1. В правильном треугольнике центры вписанной и описнной окружностей совпадают с ортоцентром (точкой пересевчения медиан). Поэтому отрезок МЕДИАНЫ от точки пересечения до вершины - это радиус описанной окружности R, а отрезок этой же медианы от точки пересечения медиан до стороны - это радиус вписанной окружности r.

Поэтому R = 2r (медианы в точке пересечения делятся в отношении )

2. В квадрате (правильном четырехугольнике) центры обеих окружностей совпадают с точкой пересечения диагоналей. Поэтому радиус вписанной окружности равен половине стороны квадрата, а радиус описанной окружности - половине диагонали, то есть 

R/r = корень(2).

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота