В основаниии прямоугольного паралелепипеда лежит прямоугольник.Диагональ делит прямоугольник на два прямоугольных треугольника и диагональ является гипотенузой треугольника, по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) на ходим гипотенузу: гипотенуза^2 = 2^2 + 3^2 гипотенуза = square 13 теперь представляем диагональ в прямоугольном параллелепипеде - это получается прямоугольный треугольник. Один катет в этом треугольнике одновременно является гипотенузой из предыдущего пункта решения, равен он square 13, диагональ параллелепипеда является гипотенузой треугольника, а второй катет надо найти по теореме пифагора:square38^2 = (square 13)^2 + катет^2 катет =5 Площадь поверхности состоит из двух площадей оснований и 4 площадей боковых поверхностей.
Площадь основания = 2*3 = 6 Площадь одной боковой поверхности = 2*5 = 10 Площадь второй боковой поверхности = 3*5 = 15 Общая площадь = 2(5+12+18)=70 ответ:70 см^2
В основаниии прямоугольного паралелепипеда лежит прямоугольник.Диагональ делит прямоугольник на два прямоугольных треугольника и диагональ является гипотенузой треугольника, по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) на ходим гипотенузу: гипотенуза^2 = 2^2 + 3^2
гипотенуза = square 13
теперь представляем диагональ в прямоугольном параллелепипеде - это получается прямоугольный треугольник. Один катет в этом треугольнике одновременно является гипотенузой из предыдущего пункта решения, равен он square 13, диагональ параллелепипеда является гипотенузой треугольника, а второй катет надо найти по теореме пифагора:square38^2 = (square 13)^2 + катет^2
катет =5
Площадь поверхности состоит из двух площадей оснований и 4 площадей боковых поверхностей.
Площадь основания = 2*3 = 6
Площадь одной боковой поверхности = 2*5 = 10
Площадь второй боковой поверхности = 3*5 = 15
Общая площадь = 2(5+12+18)=70
ответ:70 см^2
3.
a=x
b=4x
P(прям)=60см
P(равновелик. кв)-?
Р(прям)=2(a+b)
60=2(x+4x)
60=2*5x
10x=60
x=6 ⇒ a=6 см, b=24см
S(прям)=a*b = 6*24=144 см²
S(кв)=a² ⇒ a=√S
a=√144=12 см
P(кв)=4*a = 4*12=48 см
4.
a=10 см (мен. основание)
b=22 см (бол. основание)
с=d=10 см (бок. стороны)
S(трап)-?
S=1/2*(a+b)*h
высоты делать трап. на прямоугольник, и два равных прямоугольных треугольника (с гипотенузой 10 см, и меньшим катетом (22-10)/2=6 см)
по т. Пифагора: h=√10²-6²=√64=8 см
S=1/2*(10+22)*8=1/2*32*8=128 см²
5.
с=8 см
a=b=5 см
S(тр) -?
Р(тр) - ?
P=a+b+c=5+5+8=18 см
S=a*h
Медиана равнобед. тр. является и высотой и делит его на два равных прямоугольных тр-ка (гипотенуза 5 см, мен. катет 4 см)
По т. Пифагора h=√5²-4²=√9=3 см
S=8*3=24 см²
6.
см. предыдущую задачу S=24 см²
7.
d1=24 см
d2=10 см
Р(ромб)-?
S (ромб)-?
S=(d1*d2)/2
S=(24*10)/2=120см²
P=4√(d1/2)²+(d2/2)²
P=4√(24/2)²+(10/2)²=4√12²+5²=4√169=4*13=52 см
8.
a=12 см
с=20 см
S(прям. тр)-?
P(прям. тр)-?
По т. Пифагора: b=√20²-12²=√256=16 см
P=a+b+с
P=12+16+20=48 см
S=1/2ab
S=1/2*16*12=1/2*192=96 см²
9.
a=6 см
α = 30⁰
S(ромб)-?
S=a*2Sinα
S=6*2Sin30=6 см²