В четырехугольнике ABCD AB = DC, точка 0, точка пересечения диагоналей. Прямая m проходит через точку 9 и пересекает стороны
BC и ADсоответственно в точках M N соответственно. Среди
векторов BM, MC, AN, DN, AM, NC найдите : а) коллинеарные
6) сонаправленные векторы,
в) противоположно направленные векторы,
г) равные векторы,
д) векторы, имеющие равные длины.
Объяснение:
Дано:
Отрезок с концами в точках N (-2; 3) и K (3 - 4). в
Выполните:
а) параллельный перенос отрезка NK, заданный вектором a (-5; 4);
б) поворот отрезка NK вокруг точки К на 60 ° против часовой стрелки
Решение.
a)
При параллельном переносе отрезка NK с . вектора a координаты отрезка N'K' равны
то есть в результате параллельного переноса получили отрезок N'K' c концами N'(-7; 7) и K' (-2; 0)
б)
Осуществим такой параллельный перенос системы координат, при котором начало координат находится в точке К
В новой (Х,У) системе координат координаты точки N равны
Теперь повернём вектор KN (-5; 7) вокруг точки К на угол α = 60°
Поворот на плоскости задаётся формулами
x' = x · cos α + у · sin α
y' = x · sin α + y · cos α
Поэтому координаты точки N' будут равны
В начальной системе координат (х,у) координаты точки N'
Таким образом. в результате поворота отрезка NK вокруг точки K на угол α = 60° против часовой стрелки получили отрезок N'K c концами в точках N'(-5.862; -4.83) и К(3; -4)
ответ: 120,7м; 60,35м
Объяснение:
Сам монумент, расстояние от точки А до основания монумента и расстояние от точки А до самой высокой точки образуют прямоугольный треугольник.
Высота монумента является катетом, расстояние от основания до точки А вторым катетом, а расстояние от точки А до вершины монумента гипотенузой.
Для того чтобы найти расстояние от точки А до вершины, нужно выстоу монумента разделить на sin60° и получим:
105/0,87=120,7м
Для нахождения расстояния от основания монумета до точки А, нужно расстояние от точки А до самой высокой точки умножить на cos60°: 120,7*0,5=60,35м