Основание высоты правильной пирамиды проецируется в центр описанной вокруг основания пирамиды окружности.
Обозначим пирамиду МАВСD, МО - высота, О - центр описанной окружности= точка пересечения диагоналей квадрата.
АС =8√2 ( по формуле диагонали квадрата).
МО перпендикулярна основан, ⇒ перпендикулярна каждой прямой, проходящей в плоскости АВСD через О.
∆ МОС - прямоугольный.
OC=4√2
По т.Пифагора МС=√(MO²+CO*)=√(49+32)=9
Площадь боковой поверхности пирамиды равна сумме площадей ее граней, которые являются равнобедренными треугольниками,
иначе
Площадь боковой поверхности - произведение апофемы на полупериметр основания.
Высота МН грани ( апофема) является медианой и делит ВС пополам. По т.Пифагора
МН=√(MB²-BH*)=√(81-16)=√65
S=h•MH=16•√65=16√65 (ед. площади)
1) KMNB параллелограмм - верно, так как BN║KM по условию и MN║KB как основания трапеции.
2) KMNB ромб - неверно, так как MN ≠ KM по условию.
3) MNPB ромб - верно. MB║NP по условию, MN║BP как основания трапеции, значит MNPB - параллелограмм.
Смежные стороны у него равны (MN = NP по условию), значит MNPB - ромб.
4) ∠KBM = ∠MBN - неверно, так как в параллелограмме, который не является ромбом, диагонали не лежат на биссектрисах углов.
5) ∠MBN = ∠NBP - верно так как в ромбе диагонали лежат на биссектрисах его углов.
Основание высоты правильной пирамиды проецируется в центр описанной вокруг основания пирамиды окружности.
Обозначим пирамиду МАВСD, МО - высота, О - центр описанной окружности= точка пересечения диагоналей квадрата.
АС =8√2 ( по формуле диагонали квадрата).
МО перпендикулярна основан, ⇒ перпендикулярна каждой прямой, проходящей в плоскости АВСD через О.
∆ МОС - прямоугольный.
OC=4√2
По т.Пифагора МС=√(MO²+CO*)=√(49+32)=9
Площадь боковой поверхности пирамиды равна сумме площадей ее граней, которые являются равнобедренными треугольниками,
иначе
Площадь боковой поверхности - произведение апофемы на полупериметр основания.
Высота МН грани ( апофема) является медианой и делит ВС пополам. По т.Пифагора
МН=√(MB²-BH*)=√(81-16)=√65
S=h•MH=16•√65=16√65 (ед. площади)
1) KMNB параллелограмм - верно, так как BN║KM по условию и MN║KB как основания трапеции.
2) KMNB ромб - неверно, так как MN ≠ KM по условию.
3) MNPB ромб - верно. MB║NP по условию, MN║BP как основания трапеции, значит MNPB - параллелограмм.
Смежные стороны у него равны (MN = NP по условию), значит MNPB - ромб.
4) ∠KBM = ∠MBN - неверно, так как в параллелограмме, который не является ромбом, диагонали не лежат на биссектрисах углов.
5) ∠MBN = ∠NBP - верно так как в ромбе диагонали лежат на биссектрисах его углов.