Відношення площ вписаного і описаного кругів правильного многокутника = 0.5. Знайдіть кількість сторін многокутника і довжини кіл, які обмежуть ці круги, якщо периметр многокутника = 8.
Так как медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным. Рассмотрим треугольник, образованный медианой и высотой. Угол между медианой и высотой = 50°, угол, который образует высота со стороной, к которой она проведена, равен 90°. Тогда третий угол в рассматриваемом треугольнике равен 40° (180 - 90 - 50). Теперь рассмотрим треугольник, BCB1, он равнобедренный, так как BB1 = B1C. Значит, что углы B1BC и B1CB равны. Угол CB1B, как мы нашли, равен 40° . Следовательно, углы BB1 и B1C равны по (180-40)/2 градусов, т.е. по 70°. Мы определили, что в треугольнике ABC один из углов прямой, а второй равен 70°. Значит третий угол равен 180° - 90° - 70° = 20°.
20°, 70°, 90°.
Объяснение:
Так как медиана равна половине стороны, к которой она проведена, то такой треугольник является прямоугольным. Рассмотрим треугольник, образованный медианой и высотой. Угол между медианой и высотой = 50°, угол, который образует высота со стороной, к которой она проведена, равен 90°. Тогда третий угол в рассматриваемом треугольнике равен 40° (180 - 90 - 50). Теперь рассмотрим треугольник, BCB1, он равнобедренный, так как BB1 = B1C. Значит, что углы B1BC и B1CB равны. Угол CB1B, как мы нашли, равен 40° . Следовательно, углы BB1 и B1C равны по (180-40)/2 градусов, т.е. по 70°. Мы определили, что в треугольнике ABC один из углов прямой, а второй равен 70°. Значит третий угол равен 180° - 90° - 70° = 20°.
Из площади трапеции ABCD найдем высоту трапеции CH
\displaystyle \tt S_{ABCD}=\frac{AD+BC}{2}\cdot CH~~~\Rightarrow~~~ CH=\frac{2S_{ABCD}}{AD+BC} =\frac{2\cdot84}{4+3}= 24S
ABCD
=
2
AD+BC
⋅CH ⇒ CH=
AD+BC
2S
ABCD
=
4+3
2⋅84
=24
Так как AD || MN и BC || MN, то CK ⊥ MN. Высота CK в два раза меньше высоты CH, т.е. CK = 24/2 = 12.
Средняя линия трапеции равна полусумме основания,т.е.
\tt MN=\dfrac{AD+BC}{2}=\dfrac{4+3}{2}=3.5MN=
2
AD+BC
=
2
4+3
=3.5
\tt S_{BCNM}=\dfrac{MN+BC}{2}\cdot CK =\dfrac{3.5+3}{2}\cdot12= 57S
BCNM
=
2
MN+BC
⋅CK=
2
3.5+3
⋅12=57 кв. ед.
ответ: 57 кв. ед..