Найдем координаты вектора АС (диагональ квадрата) и его модуль. Координаты вектора равны разности соответствующих координат точек его конца и начала. Длина вектора (модуль), заданного координатами, равна корню квадратному из суммы квадратов его координат. В нашем случае: АС{-7;1} и |AC|=√(49+1)=√50. Нам дан квадрат. Его стороны равны. Значит |AB|=|BC|=5. (по Пифагору). Пусть вершина В квадрата имеет координаты Хb и Yb. Тогда координаты вектора АВ{Xb-3;Yb-0}, а координаты вектора СВ{Xb-4;Yb-1}. Их модули соответственно |AB|=√[(Xb-3)²+Yb²)] и |СВ|=√[(Xb-4)²+(Yb-1)²] равны между собой и равны 5. Равны и квадраты модулей, то есть: Xb²-6Xb+9+Yb²=Xb²-8Xb+16+Yb²-Yb+1 или 14Xb-2Yb+8=0 отсюда Yb=7Xb+4. Так как квадрат модуля АВ равен 25, имеем: Xb²-6Xb+9+(7Xb+4)²=25. Отсюда Xb²-6Xb+9+49Xb²+56Xb+16-25=0. Отсюда Х1=-1 и X2=0 (не удовлетворяет). Итак, точка В имеет координаты Xb=-1 и Yb=7*(-1)+4=-3. То есть имеем: В(-1;-3). найдем координаты точки О пересечения диагоналей. Это точка О - середина диагонали АС (свойство диагоналей). Координаты середины отрезка AС равны сумме координат начала и конца отрезка, деленной пополам. то есть О((3-4)/3;(1+0)/2) или О(-0,5;0,5). По этой же формуле Xo=(Xb+Xd)/2 и Yo=(Yb+Yd)/2. Подставим известные значения и получим: Xd=0 и Yd=4. ответ: вершины квадрата АВСD имеют координаты В(-1;-3) и D(0;4).
Тетраэдр — многогранник, гранями которого являются четыре треугольника. Сечение тетраэдра плоскостью PNM является четырехугольником, стороны которого параллельны друг другу и потому этот четырехугольник - параллелограмм. В нем MN является средней линией стороны АС и потому отрезок MN параллелен АС , а его длина равна половине АС=5 см PN вляется средней линией стороны DB, параллелен ей, и длина PN=6 см КР принадлежит плоскости PNM, параллельна АС т.к. через три точки, не лежащие на одной прямой, можно провести только одну плоскость. В данном случае этими точками являются точки P, N, и M.
КА=РС, и потому точка К - середина ребра АD Точки М, N и Р - середины сторон DC, AB и BC и потому КМ=РN и К- середина DА Четырехугольник KPNM - параллелограмм, в нем PN=KM=6см и MN=KP=5см Периметр KPNM=2(6+5)=22 см
Координаты вектора равны разности соответствующих координат точек его конца и начала. Длина вектора (модуль), заданного координатами, равна корню квадратному из суммы квадратов его координат.
В нашем случае: АС{-7;1} и |AC|=√(49+1)=√50.
Нам дан квадрат. Его стороны равны. Значит |AB|=|BC|=5. (по Пифагору).
Пусть вершина В квадрата имеет координаты Хb и Yb.
Тогда координаты вектора АВ{Xb-3;Yb-0},
а координаты вектора СВ{Xb-4;Yb-1}.
Их модули соответственно
|AB|=√[(Xb-3)²+Yb²)] и |СВ|=√[(Xb-4)²+(Yb-1)²] равны между собой и равны 5.
Равны и квадраты модулей, то есть:
Xb²-6Xb+9+Yb²=Xb²-8Xb+16+Yb²-Yb+1 или 14Xb-2Yb+8=0 отсюда Yb=7Xb+4.
Так как квадрат модуля АВ равен 25, имеем:
Xb²-6Xb+9+(7Xb+4)²=25. Отсюда Xb²-6Xb+9+49Xb²+56Xb+16-25=0. Отсюда Х1=-1 и X2=0 (не удовлетворяет). Итак, точка В имеет координаты Xb=-1 и Yb=7*(-1)+4=-3.
То есть имеем: В(-1;-3).
найдем координаты точки О пересечения диагоналей. Это точка О - середина диагонали АС (свойство диагоналей).
Координаты середины отрезка AС равны сумме координат начала и конца отрезка, деленной пополам. то есть О((3-4)/3;(1+0)/2) или О(-0,5;0,5).
По этой же формуле Xo=(Xb+Xd)/2 и Yo=(Yb+Yd)/2. Подставим известные значения и получим: Xd=0 и Yd=4.
ответ: вершины квадрата АВСD имеют координаты В(-1;-3) и D(0;4).
Тетраэдр — многогранник, гранями которого являются четыре треугольника.
Сечение тетраэдра плоскостью PNM является четырехугольником, стороны которого параллельны друг другу и потому этот четырехугольник - параллелограмм.
В нем MN является средней линией стороны АС и потому отрезок MN параллелен АС , а его длина равна половине АС=5 см
PN вляется средней линией стороны DB, параллелен ей, и длина PN=6 см
КР принадлежит плоскости PNM, параллельна АС т.к. через три точки, не лежащие на одной прямой, можно провести только одну плоскость. В данном случае этими точками являются точки P, N, и M.
КА=РС, и потому точка К - середина ребра АD
Точки М, N и Р - середины сторон DC, AB и BC и потому КМ=РN и К- середина DА
Четырехугольник KPNM - параллелограмм, в нем
PN=KM=6см и
MN=KP=5см
Периметр KPNM=2(6+5)=22 см