Відомо, що |a| = |b| = 4, а вектори а+2b і а взаємно перпендикулярні. Знайдіть кут між векторами а і b (у градусах) та знайдіть а × b (а і b - вектори, просто не знайшов як поставити стрілку зверху)
Обозначим внутренние односторонние углы, образованные при пересечении двух параллельных прямых секущей прямой альфа и бета, а точки пересечения параллельных прямых с секущей буквами А и В.
Начертим биссектрисы углов альфа и бета. Они пересекутся в точке С.
Угол ВСА=альфа:2
Угол АСВ=бета:2
альфа+бета=180* (по теореме), следовательно
альфа:2+бета:2=90*
Искомый угол С треугольника АВС равен 180-(альфа:2+бета:2)=
Виділяємо повні квадрати:
для x: 5 (x²-2 * 3x + 3²) -5 * 3² = 5 (x-3) ²-45,
для y: 9 (y² + 2 * 1y + 1) -9 * 1 = 9 (y + 1) ²-9.
В результаті отримуємо: 5 (x-3) ² + 9 (y + 1) ² = 45
Розділимо всі вираз на 45: ((x-3) ² / 9) + ((y + 1) ² / 5) = 1.
Параметри кривої - це еліпс, його півосі a = 3 і b = √5.
Центр еліпса в точці: C (3; -1)
Координати фокусів F1 (-c; 0) і F2 (c; 0), де c - половина відстані між фокусами: F1 (-2; 0), F2 (2; 0). з = √ (9 - 5) = + -√4 = + -2.
З урахуванням центру, координати фокусів рівні:
F1 ((- 2 + 3) = 1; -1), F2 ((2 + 3) = 5; -1).
Ексцентриситет дорівнює: е = с / а = 2/3.
Внаслідок нерівності c <a ексцентриситет еліпса менше 1.
Обозначим внутренние односторонние углы, образованные при пересечении двух параллельных прямых секущей прямой альфа и бета, а точки пересечения параллельных прямых с секущей буквами А и В.
Начертим биссектрисы углов альфа и бета. Они пересекутся в точке С.
Угол ВСА=альфа:2
Угол АСВ=бета:2
альфа+бета=180* (по теореме), следовательно
альфа:2+бета:2=90*
Искомый угол С треугольника АВС равен 180-(альфа:2+бета:2)=
180-90=90
Что и требовалось доказать