Відомо, що d - точка перетину діагоналей опуклого чотирикутника mkpf, md: dp = 4: 9, kd: df = 7: 3. виразіть вектори ef, fd, de, kd, pe через ветори kd=m, fk=n.
Книги это источник знаний. Сейчас каждого встречного можно увидеть с телефон, планшетом и любой другой техникой. Мы и не задумываемся зачем нам книги. Когда мы читаем мы становимся образованным человеком, начинаем правильно излагать свою мысль. Сейчас почти каждый не образованный, мы встречаем их на улице, в школе, на уроке они везде. Известны случаи когда люди играли в телефон и погибли. Так вот книги эта жизнь автора, проблема с которой он столкнулся. И он учиться выражать свою мысль. Добавь от себя
по теореме: Если одна из двух прямых (это ВС) лежит в некоторой плоскости, а другая прямая (это MD) пересекает эту плоскость в точке (это D) , НЕ лежащей на первой прямой (на ВС), то эти прямые скрещивающиеся.
(ВС) принадлежит плоскости по условию,
(MD) НЕ принадлежит плоскости (т.к. М НЕ принадлежит по условию) --->
(MD) ПЕРЕСЕКАЕТ плоскость в точке D ( D ведь принадлежит плоскости))
и эта точка D не лежит на прямой (ВС).
1 б) (MB) и (DK) скрещивающиеся прямые
и (MB) и (DK) пересекают данную плоскость --- здесь теорему не применить)))
нужно рассмотреть другую плоскость... например (MBD) -- три точки однозначно определяют плоскость))) ---аналогично можно рассмотреть, например, плоскость (KBD)
(MВ) принадлежит плоскости (MBD) по построению,
(КD) НЕ принадлежит плоскости (т.к. К является серединой (МА),
А НЕ принадлежит (MBD) по построению,
следовательно и К НЕ принадлежит (MBD)) --->
(KD) ПЕРЕСЕКАЕТ плоскость (MBD) в точке D
и эта точка D не лежит на прямой (МВ).
2) точки М и К принадлежат плоскости (АВС), следовательно и вся прямая (МК) принадлежит (АВС),
для треугольника АВС отрезок МК -- средняя линия по условию)))
про среднюю линию треугольника известно, что она || третьей стороне треугольника (в нашем случае || АС
1 a) (MD) и (BC) скрещивающиеся прямые
по теореме: Если одна из двух прямых (это ВС) лежит в некоторой плоскости, а другая прямая (это MD) пересекает эту плоскость в точке (это D) , НЕ лежащей на первой прямой (на ВС), то эти прямые скрещивающиеся.
(ВС) принадлежит плоскости по условию,
(MD) НЕ принадлежит плоскости (т.к. М НЕ принадлежит по условию) --->
(MD) ПЕРЕСЕКАЕТ плоскость в точке D ( D ведь принадлежит плоскости))
и эта точка D не лежит на прямой (ВС).
1 б) (MB) и (DK) скрещивающиеся прямые
и (MB) и (DK) пересекают данную плоскость --- здесь теорему не применить)))
нужно рассмотреть другую плоскость... например (MBD) -- три точки однозначно определяют плоскость))) ---аналогично можно рассмотреть, например, плоскость (KBD)
(MВ) принадлежит плоскости (MBD) по построению,
(КD) НЕ принадлежит плоскости (т.к. К является серединой (МА),
А НЕ принадлежит (MBD) по построению,
следовательно и К НЕ принадлежит (MBD)) --->
(KD) ПЕРЕСЕКАЕТ плоскость (MBD) в точке D
и эта точка D не лежит на прямой (МВ).
2) точки М и К принадлежат плоскости (АВС), следовательно и вся прямая (МК) принадлежит (АВС),
для треугольника АВС отрезок МК -- средняя линия по условию)))
про среднюю линию треугольника известно, что она || третьей стороне треугольника (в нашем случае || АС
(МК) ∈ (АВС), (МК) ∈ (а), (МК) || (AC) ---> (AC) || (a) по теореме:
Если прямая, не лежащая в данной плоскости, || КАКОЙ-НИБУДЬ прямой, лежащей в плоскости, то она || и ВСЕЙ данной ПЛОСКОСТИ.
(АС) НЕ ЛЕЖИТ в плоскости (а)...