Если набранное решение пропадет еще раз - значит, не судьба.
Известная формула длины биссектрисы (если надо показать, как это получается, обращайтесь :))
L^2 = a*b - x*y;
Здесь L = 12, a = 14; b = 35; пусть с - третья сторона, тогда x и y - отрезки, на которые биссектриса делит с.
Из известного свойства биссектрисы x = c*a/(a + b); y = c*b/(a + b); поэтому
L^2 = a*b*(1 - c^2/(a + b)^2); то есть
c^2 = (a + b)^2*(1 - L^2/(a*b));
Вычисления дают с^2 = 1695,4 (это точное значение, а не приближенное, если не понятно.)
Поскольку найдены все три стороны, задача в принципе уже решена. Но вычисления по формуле Герона в данном случае слишком громоздки. Проще найти угол напротив стороны с.
По теореме косинусов (обозначено t = cos(C))
с^2 = a^2 + b^2 - 2*a*b*t;
t = (a^2 + b^2 - c^2)/(2*a*b);
Подстановка значений дает t = - 7/25; (угол С тупой)
Отсюда sin(C) = 24/25;
Площадь S = a*b*sin(C)/2 = 14*35*(24/25)/2 = 235,2
Больше всего времени я потратил на поиски решения, использующего Пифагорову тройку 7,24,25, которая возникает по ходу решения. Увы - не вышло. Может, кто-то сообразит?
1) Первая задача решается немного легче на мой взгляд. Стоит вспомнить теорему синусов в расширенном виде.
Здесь
R - искомый радиус окружности.
Теперь надо найти угол А. Сумма углов в треугольнике равна 180 градусам.
Остальные два угла известны по условию задачи.
Подставим в (1)
сократим на 2 обе части
R=3.
2) Докажем, что треугольник ACD - равнобедренный. Смотри рисунок во вложении. Так как АВ=ВС, то углы ВАС и ВСА равны. Вычислим сколько градусов составляют эти углы. Сумма всех углов в треугольнике равна 180 градусам. В самом треугольнике АВС
Пусть
180=x+x+36
180=2x+36
2x=180-36
2x=144
x=72
Так как AD - биссектриса, то
Теперь знаем два угла в треугольнике ADC.
По той же теореме о сумме углов в треугольнике
Получается, что
Значит два угла в треугольнике ACD - равны, поэтому треугольник равнобедренный.
Если набранное решение пропадет еще раз - значит, не судьба.
Известная формула длины биссектрисы (если надо показать, как это получается, обращайтесь :))
L^2 = a*b - x*y;
Здесь L = 12, a = 14; b = 35; пусть с - третья сторона, тогда x и y - отрезки, на которые биссектриса делит с.
Из известного свойства биссектрисы x = c*a/(a + b); y = c*b/(a + b); поэтому
L^2 = a*b*(1 - c^2/(a + b)^2); то есть
c^2 = (a + b)^2*(1 - L^2/(a*b));
Вычисления дают с^2 = 1695,4 (это точное значение, а не приближенное, если не понятно.)
Поскольку найдены все три стороны, задача в принципе уже решена. Но вычисления по формуле Герона в данном случае слишком громоздки. Проще найти угол напротив стороны с.
По теореме косинусов (обозначено t = cos(C))
с^2 = a^2 + b^2 - 2*a*b*t;
t = (a^2 + b^2 - c^2)/(2*a*b);
Подстановка значений дает t = - 7/25; (угол С тупой)
Отсюда sin(C) = 24/25;
Площадь S = a*b*sin(C)/2 = 14*35*(24/25)/2 = 235,2
Больше всего времени я потратил на поиски решения, использующего Пифагорову тройку 7,24,25, которая возникает по ходу решения. Увы - не вышло. Может, кто-то сообразит?
1) Первая задача решается немного легче на мой взгляд. Стоит вспомнить теорему синусов в расширенном виде.
Здесь
R - искомый радиус окружности.
Теперь надо найти угол А. Сумма углов в треугольнике равна 180 градусам.
Остальные два угла известны по условию задачи.
Подставим в (1)
сократим на 2 обе части
R=3.
2) Докажем, что треугольник ACD - равнобедренный. Смотри рисунок во вложении. Так как АВ=ВС, то углы ВАС и ВСА равны. Вычислим сколько градусов составляют эти углы. Сумма всех углов в треугольнике равна 180 градусам. В самом треугольнике АВС
Пусть
180=x+x+36
180=2x+36
2x=180-36
2x=144
x=72
Так как AD - биссектриса, то
Теперь знаем два угла в треугольнике ADC.
По той же теореме о сумме углов в треугольнике
Получается, что
Значит два угла в треугольнике ACD - равны, поэтому треугольник равнобедренный.