Відрізок AB не перетинає площину альфа. Знайдіть відстань від середини даного відрізка до площини альфа, якщо його кінці віддалені від неї на 8 см і 24 см
Даны A(1; -1), В(-4; 1) - вершины равнобедренного треугольника, х + у=-3 — биссектриса внутреннего угла между равными сторонами.
Найти уравнение стороны ВС.
Подставим координаты точки В в уравнение биссектрисы.
-4 + 1 = -3. Отсюда видно, что точка В - вершина треугольника при равных боковых сторонах.
Уравнение стороны ВС можно найти двумя путями.
1 - найти точку С как симметричную точке А относительно биссектрисы.
Потом составить уравнение ВС как прямую через 2 точки.
2- найти угол (точнее тангенс угла) между прямой АВ и биссектрисой. Затем определить угловой коэффициент стороны ВС по разности угловых коэффициентов АВ и биссектрисы (свойство симметрии прямых АВ и ВС относительно биссектрисы).
1) Находим к(AD) из уравнения биссектрисы у = -х - 3 .к(BAD) = -1
Уравнение AD: y =( -1/(-1))x + b.Подставим координаты точки A:
-1 =1*1 + b, отсюда b = -1 - 1 = -2. AD: y = x - 2 или х - у - 2 = 0.
Находим координаты точки D, решая систему уравнений BD и AD.
{х + у + 3 = 0
{x - y - 2 = 0
2x + 1 = 0 x = -1/2, y = x - 2 = (-1/2) - 2 = -2,5.
Находим координаты точки С как симметричной точке А относительно точки D.
Даны A(1; -1), В(-4; 1) - вершины равнобедренного треугольника, х + у=-3 — биссектриса внутреннего угла между равными сторонами.
Найти уравнение стороны ВС.
Подставим координаты точки В в уравнение биссектрисы.
-4 + 1 = -3. Отсюда видно, что точка В - вершина треугольника при равных боковых сторонах.
Уравнение стороны ВС можно найти двумя путями.
1 - найти точку С как симметричную точке А относительно биссектрисы.
Потом составить уравнение ВС как прямую через 2 точки.
2- найти угол (точнее тангенс угла) между прямой АВ и биссектрисой. Затем определить угловой коэффициент стороны ВС по разности угловых коэффициентов АВ и биссектрисы (свойство симметрии прямых АВ и ВС относительно биссектрисы).
1) Находим к(AD) из уравнения биссектрисы у = -х - 3 .к(BAD) = -1
Уравнение AD: y =( -1/(-1))x + b.Подставим координаты точки A:
-1 =1*1 + b, отсюда b = -1 - 1 = -2. AD: y = x - 2 или х - у - 2 = 0.
Находим координаты точки D, решая систему уравнений BD и AD.
{х + у + 3 = 0
{x - y - 2 = 0
2x + 1 = 0 x = -1/2, y = x - 2 = (-1/2) - 2 = -2,5.
Находим координаты точки С как симметричной точке А относительно точки D.
x(С) = 2x(D) - x(A) = 2*(-1/2) - 1 = -2.
y(С) = 2y(D) - y(A) = 2*(-2,5) - (-1) = -4.
Теперь находим уравнение ВС. Вектор ВС = (-4-(-2); 1-(-4)) = (-2; 5).
(x + 4)/(-2) = (у - 1)/5.
Или в общем виде 5х + 2у + 18 = 0.
Дано: АВСДА₁В₁С₁Д₁ - правильная усеченная пирамида. А₁К=С₁Н=7 см, АВ=ВС=СД=АД=12 см; А₁В₁=В₁С₁=С₁Д₁=А₁Д₁=4 см. Найти АА₁.
АС - диагональ нижнего основания. По теореме Пифагора
АС² = АД² + СД² = 144 + 144 = 288. АС = 12*√2 см.
А₁С₁ - диагональ меньшего основания. По теореме Пифагора
А₁С₁² = А₁Д₁² + С₁Д₁² = 16 + 16 = 32. А₁С₁ = 4*√2 см.
АА₁С₁С - равнобедренная трапеция, где А₁Н и С₁К - высоты.
А₁Н = С₁К = ОО₁ = 7 см.
КН = А₁С₁ = 4√2 см
Прямоугольные треугольники АА₁К и СС₁Н равны по гипотенузе и катету, тогда АК = СН.
АС = КН + 2 АК.
АК = (АС – КН) / 2 = (12√2 - 4√2) / 2 = 4√2 см.
Рассмотрим Δ АА₁К, где АА₁ - гипотенуза. По теореме Пифагора
АА₁² = А₁К² + АК² = 49 + 32 = 81. АА₁ = 9 см.
ответ: 9 см.