Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
пусть координаты центра какие то (x;y) и обозначим ее О ,
тогда ОМ1 = OM2 так как оба радиусы
OM1 =√(x-7)^2+(y-7)^2
OM2 = √(x+2)^2+(y-4)^2
корни можно убрать так как равны
(x-7)^2+(y-7)^2 = (x+2)^2+(y-4)^2
x^2-14x+49+y^2-14y+49 = x^2+4x+4 + y^2 - 8y + 16
-14x+49-14y+49=4x+4-8y+16
-18x- 6y = -78
теперь решаем это уравнение со вторым 2x-y-2=0 так как они имеют точки пересечения
{18x+6y=78
{2x-y=2
{y=2x-2
{ 18x+6(2x-2)= 78
18x+12x-12=78
30x = 90
x=3
y=4
то есть это и будут центры теперь найдем радиусы так
OM1 =R
R^2=(3-7)^2+(4-7)^2 = 16+9 = 25
и уравнение
(x-3)^2+(y-4)^2=25