Дуга BD равна 2*27° = 54° (так как вписанный угол, опирающийся на эту дугу, равен половине градусной меры этой дуги).
Дуга BDAC = 180°, так как ВС - диаметр.
Дуга DAC = DDAC - BD = 180-54 = 126°. =>
<DBC = 63° (вписанный, равен половине градусной меры дуги, на которую он опирается).
9. Биссектрисы углов параллелограмма отсекают от него равнобедренные треугольники. В нашем случае эти биссектрисы имеют общую точку Е на стороне ВС. Значит
АВ = ВЕ и EC = CD => BC = 2AB.
AB = СD и BC = AD (противоположные стороны параллелограмма).
в нас почти такоэ вот
В четырёхугольник ABCD вписана окружность, АВ = 33, CD = 18. Найдите периметр четырёхугольника ABCD.
Решение.
Если в четырехугольник вписана окружность, то суммы его противоположных сторон равны, то есть для него можно записать следующее равенство:
AD+BC=AB+CD.
По условию задачи нам даны длины сторон AB=33 и CD=18, следовательно,
AD+BC=33+18=51
Периметр четырехугольника – это сумма длин всех его сторон, то есть
P=AD+BC+AB+CD,
и, подставляя известные числовые значения, имеем:
P=51+51=102.
ответ: 102.
Объяснение:
только с 33 и 18
8. <DBC=63°
9. P = 36 ед.
10. Не полное условие.
Объяснение:
Дуга BD равна 2*27° = 54° (так как вписанный угол, опирающийся на эту дугу, равен половине градусной меры этой дуги).
Дуга BDAC = 180°, так как ВС - диаметр.
Дуга DAC = DDAC - BD = 180-54 = 126°. =>
<DBC = 63° (вписанный, равен половине градусной меры дуги, на которую он опирается).
9. Биссектрисы углов параллелограмма отсекают от него равнобедренные треугольники. В нашем случае эти биссектрисы имеют общую точку Е на стороне ВС. Значит
АВ = ВЕ и EC = CD => BC = 2AB.
AB = СD и BC = AD (противоположные стороны параллелограмма).
Рabcd = 6*AB = 36 ед.