1) SinC=0,24.
2) √3/2.
3) 9 см.
Объяснение:
1) В треугольнике ABC известно, что AB=12см, BC=10см, sinA=0,2. Найдите синус угла C треугольника.
***
2) Сторона треугольника равна 24 см, а радиус описанной окружности - 8√3см Чему равен угол треугольника, противоположный данной стороне?
3)Две стороны треугольника равны 6см и 12см, а высота проведенная к третьей стороне - 4см. Найдите радиус круга, описанного вокруг треугольника.
1) По теореме синусов: ВС/SinA=AB/SinC;
SinC=AB*SinA/BC=12*0,2/10=0,24.
2) По свойству описанной окружности около треугольника:
R=AB/2SinC. Откуда SinC=AB/2R=24/2*8√3=3/2√3=(√3)/2.
3) R=abc/4S, где а,b и с - стороны треугольника; S - его площадь.
a=6 см, b=12 см, h=4 см, где h -высота BK.
AC - основание. АС=АК+КС.
АК=√6²-4²=√36-16=√20;
СК=√12²-4²=√144-16=√128;
АС=√20+√128=2√5+8√2;
S=1/2AC*BK=1/2(2√5+8√2)*4=2*(2√5+8√2)=4(√5+4√2);
R=abc/4S=6*12*(2√5+8√2)/4*4(√5+4√2)= =72*2(√5+4√2)/16(√5+4√2) = =144/16=9 см.
угол А - 36 градусов, угол В - 27 градусов, угол С - 117 градусов.
1. По теореме косинусов: а^2 + b^2 + c^2 = 2 x b x c x cos C
cos C = (b^2 + c^2 - a^2) / 2 x b x c
cosC = (4^2 + 6^2 - 3^2) / 2 x 4 x 6
(16 + 36 - 9) / 48 = 43 / 48 = 0.8958
угол С по таблице Брадиса примерно равен 27 градусов.
2. соs A = cos C = (a^2 + c^2 - b^2) / 2 x a x c
cosA = (3^2 + 6^2 - 4^2) / 2 x 3 x 6 = (9 + 36 - 16) / 36 = 29 / 36 = 0.8055
угол A по таблице Брадиса примерно равен 36 градусов.
3. Угол В = 180 - А - С = 180 - 36 - 27 = 117
1) SinC=0,24.
2) √3/2.
3) 9 см.
Объяснение:
1) В треугольнике ABC известно, что AB=12см, BC=10см, sinA=0,2. Найдите синус угла C треугольника.
***
2) Сторона треугольника равна 24 см, а радиус описанной окружности - 8√3см Чему равен угол треугольника, противоположный данной стороне?
***
3)Две стороны треугольника равны 6см и 12см, а высота проведенная к третьей стороне - 4см. Найдите радиус круга, описанного вокруг треугольника.
***
1) По теореме синусов: ВС/SinA=AB/SinC;
SinC=AB*SinA/BC=12*0,2/10=0,24.
***
2) По свойству описанной окружности около треугольника:
R=AB/2SinC. Откуда SinC=AB/2R=24/2*8√3=3/2√3=(√3)/2.
***
3) R=abc/4S, где а,b и с - стороны треугольника; S - его площадь.
a=6 см, b=12 см, h=4 см, где h -высота BK.
AC - основание. АС=АК+КС.
АК=√6²-4²=√36-16=√20;
СК=√12²-4²=√144-16=√128;
АС=√20+√128=2√5+8√2;
***
S=1/2AC*BK=1/2(2√5+8√2)*4=2*(2√5+8√2)=4(√5+4√2);
***
R=abc/4S=6*12*(2√5+8√2)/4*4(√5+4√2)= =72*2(√5+4√2)/16(√5+4√2) = =144/16=9 см.
угол А - 36 градусов, угол В - 27 градусов, угол С - 117 градусов.
Объяснение:
1. По теореме косинусов: а^2 + b^2 + c^2 = 2 x b x c x cos C
cos C = (b^2 + c^2 - a^2) / 2 x b x c
cosC = (4^2 + 6^2 - 3^2) / 2 x 4 x 6
(16 + 36 - 9) / 48 = 43 / 48 = 0.8958
угол С по таблице Брадиса примерно равен 27 градусов.
2. соs A = cos C = (a^2 + c^2 - b^2) / 2 x a x c
cosA = (3^2 + 6^2 - 4^2) / 2 x 3 x 6 = (9 + 36 - 16) / 36 = 29 / 36 = 0.8055
угол A по таблице Брадиса примерно равен 36 градусов.
3. Угол В = 180 - А - С = 180 - 36 - 27 = 117