В каждой вершине выпуклого многогранника сходится по четыре ребра. Сколько он имеет вершин и граней, если число ребер равно 12? Нарисуйте такой многогранник.
(1) Как известно, сторона лежащая против угла 30 градусов в два раза меньше гипотенузы. Диагональ цилиндра равна 2h=12, диаметр равен d^2=12^2-6^2=144-36=108, d=6 корень 3. R=d/2=3 корень 3. S=2ПR(R+h)=2П×(3 корень 3)×((3 корень 3)+6)=18ПКорень 3×(2+корень 3); (2) Радиус конуса r=18/2=9. В треугольнике углы при основании равны (180-120)/2=60/2=30 градусов. Высота конуса в 2 раза меньше за образующуюся конуса (против 30 градусов). По теореме Пифагора l^2=h^2+r^2, l=2h, 4h^2=h^2+r^2, 3h^2=r^2, 3h^2=81, h^2=27, h=3 корень 3, l=6 корень 3, S=Пr (r+l)=9П(9+6 корень 3)=27П(3+2 корень 3)
1. Общая формула для выражения радиуса описанной окружности R через сторону правильного n-угольника a:
Тогда для квадрата:
а для правильного пятиугольника:
Т.к. радиус окружности не изменяется, то можем записать:
ответ: сторона правильного пятиугольника, вписанного в ту же окружность примерно 39,9 см
2. Площадь кольца ограниченного двумя концентрическими окружностями равна разности площадей большей и меньшей окружности.
Если обозначить радиус большей окружности через R, а меньшей окружности через r, то площадь кольца равна:
ответ: площадь кольца, ограниченного двумя окружностями равна 40π см²
3. Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой равна разности площадей сектора OAB и треугольника OAB.
ΔOAB равнобедренный с углом при вершине 60°, следовательно углы при основании равны (180° - 60°) / 2 = 60°. Т.е. ΔOAB - равносторонний и радиус окружности R = OA = AB = 4 м.
Площадь равностороннего треугольника выражается через его сторону по формуле:
Площадь сектора круга через угол α стягивающей его дуги и радиус окружности R найдем по формуле:
Площадь заданной фигуры равна:
ответ: Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой примерно 1,45 м²
1. Общая формула для выражения радиуса описанной окружности R через сторону правильного n-угольника a:
Тогда для квадрата:
а для правильного пятиугольника:
Т.к. радиус окружности не изменяется, то можем записать:
ответ: сторона правильного пятиугольника, вписанного в ту же окружность примерно 39,9 см
2. Площадь кольца ограниченного двумя концентрическими окружностями равна разности площадей большей и меньшей окружности.
Если обозначить радиус большей окружности через R, а меньшей окружности через r, то площадь кольца равна:
ответ: площадь кольца, ограниченного двумя окружностями равна 40π см²
3. Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой равна разности площадей сектора OAB и треугольника OAB.
ΔOAB равнобедренный с углом при вершине 60°, следовательно углы при основании равны (180° - 60°) / 2 = 60°. Т.е. ΔOAB - равносторонний и радиус окружности R = OA = AB = 4 м.
Площадь равностороннего треугольника выражается через его сторону по формуле:
Площадь сектора круга через угол α стягивающей его дуги и радиус окружности R найдем по формуле:
Площадь заданной фигуры равна:
ответ: Площадь фигуры, ограниченной дугой окружности и стягивающей её хордой примерно 1,45 м²