В кругу проведены две перпендикулярные уровне хорды АВ i CD. Пересекаясь, они делятся на отрезки длиной 7 см и 9 см. Найдите радиус круга, касаясь обеих этих хорд и имеет С общий центр О данным кругом
Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
Радиус окружности, описанной около правильного (равностороннего) треугольника, равен двойному радиусу окружности, вписанной в этот треугольник . R = 2r , где R - радиус описанной окружности, r - радиус вписанной окружности R = 2 * 2 = 4 (cм)
Радиус окружности, вписанной в этот треугольник можно выразить через сторону треугольника
r = a * √3 / 6, где а - сторона правильного треугольника
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
R = 2r , где R - радиус описанной окружности, r - радиус вписанной окружности
R = 2 * 2 = 4 (cм)
Радиус окружности, вписанной в этот треугольник можно выразить через сторону треугольника
r = a * √3 / 6, где а - сторона правильного треугольника
r * 6
a = ---------
√3
2 * 6 12 12 * √3 12√3
a = ----------- = --------- = ------------- = ----------- = 4√3 (см)
√3 √3 √3 * √3 3
Периметр равностороннего треугольника
P = 3a
P = 3 * 4√3 = 12√3 (cм²)