В мастерской мастеру заказали решётку из металлических прутьев. Мастер на своём эскизе отметил только несколько величин. Вычисли, сколько метров прута нужно для изготовления заказа.
В правильном тетраэдре все ребра равны, а грани - правильные треугольники.
Центры граней - точки пересечения медиан (высот, биссектрис).
Привяжем систему прямоугольных координат к вершине А и найдем координаты нужных нам для решения точек учитывая, что высота правильного треугольника равна h=(√3/2)*а, высота правильного тетраэдра равна H=√(2/3)*а, медианы в точке пересечения делятся в отношении 2/3, считая от вершины, <BAC=60° => <BAH=30°,
<YpAH = 60°. Тогда
А(0;0;0).
Q(a/2;(√3/6)а;0) - так как Хq = Xp = a/2, Yq = (2/3)*h*Cos60.
М(a/4;√3a/12;(√(2/3))*а/2) - так как Xm = Xq/2, Ym = Yq/2, Zm =H/2 - из подобия треугольников).
P(a/2;(√3/3)*а;(√(2/3))*а/2) - так как Xp=Xq, Yp=(2/3)*h, Zp=Zm.
N(2a/3 ;(2√3/9)a;√(2/3))*а/3)- так как Xn=Xq+(2/3)*(1/3)*h*Cos30, Yn=Yq+(2/3)*(1/3)*h*Cos60, Zn=(1/3)*H.
Диагональ трапеции делит ее на два треугольника. Отрезки средней линии трапеции являются средними линиями треугольников (см. рисунок) По определению средней линии ее длина равна половине длины параллельного ей основания. Следовательно, длины оснований трапеции равны: 1,5 х 2 = 3 7,5 х 2 = 15
Площадь трапеции равна произведению полусуммы оснований на высоту: S = (a+b)h/2 Отсюда высота трапеции: h = 2S/(a+b) = 2 x 72 / (15+3) = 8
Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка: 6 + 3 + 6 = 15 (см.рисунок) Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания) √8²+6² = √100 = 10
Cosα = 2/9, α ≈ 77,1°
Объяснение:
В правильном тетраэдре все ребра равны, а грани - правильные треугольники.
Центры граней - точки пересечения медиан (высот, биссектрис).
Привяжем систему прямоугольных координат к вершине А и найдем координаты нужных нам для решения точек учитывая, что высота правильного треугольника равна h=(√3/2)*а, высота правильного тетраэдра равна H=√(2/3)*а, медианы в точке пересечения делятся в отношении 2/3, считая от вершины, <BAC=60° => <BAH=30°,
<YpAH = 60°. Тогда
А(0;0;0).
Q(a/2;(√3/6)а;0) - так как Хq = Xp = a/2, Yq = (2/3)*h*Cos60.
М(a/4;√3a/12;(√(2/3))*а/2) - так как Xm = Xq/2, Ym = Yq/2, Zm =H/2 - из подобия треугольников).
P(a/2;(√3/3)*а;(√(2/3))*а/2) - так как Xp=Xq, Yp=(2/3)*h, Zp=Zm.
N(2a/3 ;(2√3/9)a;√(2/3))*а/3)- так как Xn=Xq+(2/3)*(1/3)*h*Cos30, Yn=Yq+(2/3)*(1/3)*h*Cos60, Zn=(1/3)*H.
Примем а=1. Тогда
Вектор PQ{0;-√3/6; -(√(2/3)/2}. |PQ| = √(0+3/36+1/6) = 1/4.
Вектор MN{5/12;5√3/36; -(√(2/3)/6}.
|MN| = √(25/144+75/1296+1/54) = 324/1296 = 1/4.
Cosα = |(Xpq*Xmn+Ypq*Ymn+Zpq*Zmn)/(|PQ|*|MN|) или
Cosα = |(0-5/72+1/18)/((1/4)*1/4)| = |(-1/72)/(1/16)| = 2/9.
α ≈ 77,1°
По определению средней линии ее длина равна половине длины параллельного ей основания.
Следовательно, длины оснований трапеции равны:
1,5 х 2 = 3
7,5 х 2 = 15
Площадь трапеции равна произведению полусуммы оснований на высоту: S = (a+b)h/2
Отсюда высота трапеции: h = 2S/(a+b) = 2 x 72 / (15+3) = 8
Так как трапеция является равнобедренной, углы при ее основаниях попарно равны. Высоты, проведенные от верхнего основания к нижнему, делят нижнее основание на три отрезка: 6 + 3 + 6 = 15 (см.рисунок)
Длину боковой стороны найдем по теореме Пифагора из образовавшегося прямоугольного треугольника (боковая сторона - гипотенуза, катеты - высота и часть нижнего основания)
√8²+6² = √100 = 10