В неравнобедренном остроугольном треугольнике ABC со сторонами a, b, ccдлины соответствующих медиан равны ma, mb, mc. Рассмотрим 7 величин: (b+c)/2
|b−c|/2
ma ( а это нижний индекс)
3(b+c)/2
a/2
mb+mc
(b+c)/2+a
Упорядочите их в порядке убывания.
В качестве ответа введите в нужном порядке числа от 1 до 7 через пробел (например, «1 7 2 6 3 5 4»).
Четырехугольник АВСD - параллелограмм, следовательно его диагонали в точке пересечения делятся пополам.
ВМ=ОD и ВМ=КD, а <OBM=<ODK как накрест лежащие при параллельных прямых. Значит треугольники ОВМ и ОDK равны по двум сторонам и углу между ними. В равных треугольниках против равных углов лежат равные стороны.
ОМ=ОD, что и требовалось доказать.
Знайти: Pabcd.
Решение:
Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см.
С прямокутного трикутника АОВ:
АО = 6 см, ВО = 8см.
За т. Піфагора:
Периметр ромба дорівнює добутку 4 сторін
Відповідь: 40 см.