В окружность вписан треугольнрк со стороной, равной 2Корень3 см и удаленной от центра окружности на 1 см. Найдите угол, лежащий против этой стороны ПЛС
Осевое сечение усеченного конуса - равнобедренная трапеция. основания: а=22 см (R₁*2), b=32 см (R₂*2) боковая сторона - образующая конуса l =13 см найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса. по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм ответ: расстояние между центрами оснований усеченного конуса 12 см
1) в треугольнике ACD: AC = 10, CD = 6, ∠D = 90, значит по т. Пиф. AD = AC^2-CD^2 = 100 - 36 = 64, AD = 8 2) S= 12 * 18 * sin 30 = 108 3) т.к. высота делит основание на равные части, то половина основания равна 6 и по т. Пиф. находим боковую сторону.ю являющуюся гипотенузой: 6^2 + 8^2 = 100, т. е. бок. сторона равна 10. S = (1/2) * 8 * 12 = 48 4) из ΔBDC находим BD = BC^2 - DC^2= 100-64 = 36, BD = 6. Из ΔABD тангенс угла BAD = BD / AD = 1, отсюда AD = 6. Значит AC = 6+8=14. S = (1/2)* 6 * 14 = 42 5) угол BAD = 180 -150 =30 (как внутренние односторонние). Высота трапеции лежит против угла в 30 градусов, поэтому равна половине гипотенузы, т.е. 12/2 = 6. S = (14 + 30) / 2 * 6 = 132
основания:
а=22 см (R₁*2), b=32 см (R₂*2)
боковая сторона - образующая конуса l =13 см
найти высоту равнобедренной трапеции - расстояние от центра верхнего основания до центра нижнего основания усеченного конуса
перпендикуляры от верхнего основания до нижнего(из тупых углов) отсекают от равнобедренной трапеции 2 равных прямоугольных треугольника с гипотенузой(образующая конуса) 13 см и катетом 5 см ((32-22)/2=10/2=5 см). найти катет -H высоту усеченного конуса.
по теореме Пифагора: 13²=5²+H². H²=169-25. H=12 cм
ответ: расстояние между центрами оснований усеченного конуса 12 см
2) S= 12 * 18 * sin 30 = 108
3) т.к. высота делит основание на равные части, то половина основания равна 6 и по т. Пиф. находим боковую сторону.ю являющуюся гипотенузой:
6^2 + 8^2 = 100, т. е. бок. сторона равна 10.
S = (1/2) * 8 * 12 = 48
4) из ΔBDC находим BD = BC^2 - DC^2= 100-64 = 36, BD = 6. Из ΔABD тангенс угла BAD = BD / AD = 1, отсюда AD = 6. Значит AC = 6+8=14.
S = (1/2)* 6 * 14 = 42
5) угол BAD = 180 -150 =30 (как внутренние односторонние).
Высота трапеции лежит против угла в 30 градусов, поэтому равна половине гипотенузы, т.е. 12/2 = 6. S = (14 + 30) / 2 * 6 = 132