Окружность, вписанная в правильный многоугольник, и окружность, описанная около него, имеют общий центр, причем, так как стороны многоугольника - касательные для вписанной окружности, её радиус является высотой равнобедренного треугольника соединяющего центр с вершинами описанного многоугольника. (см. рисунок).
На рисунке О - центр окружностей, ОА=ОВ=R=8, ОН=r=4√3. Треугольник ОНВ прямоугольный. Sin∠OAH=ОН:ОА=4√3:8=√3/2 - это синус 60°. Следовательно, в равнобедренном треугольнике углы при АВ=60°, ⇒ ∠АОВ=60°, а ∆ АОВ - равносторонний. Сторона данного многоугольника АВ=8. Угол АОВ - центральный, делит окружность на 360°:60°=6 равных углов, противолежащих каждой стороне многоугольника. ⇒ Данный многоугольник имеет 6 сторон.
1)медиана = половине стороны, к которой она проведена, только в прямоугольном треугольнике
угол В=90
2)по Т о сумме углов треугольника: в треугольнике АВС: угол С+угол А+угол В=180
в треугольнике NCB: уголС+65+1/2 уголВ=180
уголА+1/2 уголВ-65=0
уголА=65-45
уголА=20
Окружность, вписанная в правильный многоугольник, и окружность, описанная около него, имеют общий центр, причем, так как стороны многоугольника - касательные для вписанной окружности, её радиус является высотой равнобедренного треугольника соединяющего центр с вершинами описанного многоугольника. (см. рисунок).
На рисунке О - центр окружностей, ОА=ОВ=R=8, ОН=r=4√3. Треугольник ОНВ прямоугольный. Sin∠OAH=ОН:ОА=4√3:8=√3/2 - это синус 60°. Следовательно, в равнобедренном треугольнике углы при АВ=60°, ⇒ ∠АОВ=60°, а ∆ АОВ - равносторонний. Сторона данного многоугольника АВ=8. Угол АОВ - центральный, делит окружность на 360°:60°=6 равных углов, противолежащих каждой стороне многоугольника. ⇒ Данный многоугольник имеет 6 сторон.