В окружности с центром в точке O проведена хорда AB Длина которой равна длине радиуса. Перпендикулярно этой хорде проведен радиус ОК. Радиус ОК и хорда АВ пресекаются в точке М. Длина отрезка АМ равна 14,2 см.
А) Постройте чертеж по условию задачи
Б) Найдите длину хорды АВ
В) Вычислите длину радиуса
г) Найдите периметр треугольника АОВ
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ПРИЗНАК ПРЯМОУГОЛЬНИКА Параллелограмм является прямоугольником, если выполняется любое из условий: Если диагонали параллелограмма равны. Если квадрат диагонали параллелограмма равен сумме квадратов смежных сторон. Если углы параллелограмма равны.Основные свойства прямоугольника
Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны: ...
Противоположные стороны прямоугольника параллельны: ...
Прилегающие стороны прямоугольника всегда перпендикулярны: ...
Все четыре угла прямоугольника прямые: ...
Сумма углов прямоугольника равна 360 градусов: