В основі прямої призми лежить прямокутник із діагоналлю d, яка утворює зі стороною основи кут альфа. Знайдіть об'єм призми, якщо її діагональ утворює з площиною основи кут бета
Т.к. диагональ является биссектрисой острого угла, то угол между диагональю и большим основанием равен углу между диагональю и верхним основанием, это внутренние накрест лежащие, при параллельных основаниях и секущей диагонали, значит, боковая сторона равна меньшему основанию. т.к. треугольник, образованный боковой стороной, данной диагональю и верхним основанием оказался с двумя равными углами при основании. А если их вершны тупого угла опустить высоту 12 см, то отрезки, которые отсекает высота на нижнем большем основании равны по √(13²-12²)=5
Тогда нижнее основание равно 2*5+13=23, а периметр 23+13+13+13=23+39=62/см/
площадь же найдем, как полусумму оснований умнож. на высоту, т.е.
Т.к. диагональ является биссектрисой острого угла, то угол между диагональю и большим основанием равен углу между диагональю и верхним основанием, это внутренние накрест лежащие, при параллельных основаниях и секущей диагонали, значит, боковая сторона равна меньшему основанию. т.к. треугольник, образованный боковой стороной, данной диагональю и верхним основанием оказался с двумя равными углами при основании. А если их вершны тупого угла опустить высоту 12 см, то отрезки, которые отсекает высота на нижнем большем основании равны по √(13²-12²)=5
Тогда нижнее основание равно 2*5+13=23, а периметр 23+13+13+13=23+39=62/см/
площадь же найдем, как полусумму оснований умнож. на высоту, т.е.
(13+23)*5/2=90/см²/
Все грани прямоугольного параллелепипеда - прямоугольники.
Пусть ребра основания равны 4 и 4 см, а боковое ребро 2 см.
Тогда боковое ребро - наименьшее ребро (все боковые ребра равны). Осталось выяснить, какая из диагоналей, скрещивающаяся с данным ребром, наибольшая.
Так как ребра основания равны, то боковые грани - равные прямоугольники. По теореме Пифагора вычислим диагональ одной боковой грани:
DC₁ = √(DC² + CC₁²) = √(16 + 4) = √20 = 2√5 см
Диагональ основания:
BD = √(AB² + AD²) = √(16 + 16) = √32 = 4√2 см
Диагональ основания больше. Значит надо найти расстояние от ребра АА₁ до BD.
АО⊥АА₁ так как ребро АА₁ перпендикулярно плоскости АВС, а АО лежит в этой плоскости,
АО⊥BD как диагонали квадрата, значит АО - искомое расстояние.
АО = 1/2BD = 1/2 · 4√2 = 2√2 см (так как диагонали квадрата равны и точкой пересечения делятся пополам)