В основании параллелепипеда лежит квадрат со стороной равной 4 см. Одно из диагональных сечений параллелепипеда перпендикулярно плоскости основания и имеет площадь 32 см^2.Найти площадь другого диагонального сечения, если боковое ребро образует со сторонами основания равные углы по 60 градусов.
В равностороннем треугольнике углы = 60° - угол при вершине ромба и ему противолежащий.
Сумма углов четырехугольника 360°.
360°- 60°- 60°= 240° - сумма противолежащих равных углов ромба
240°:2=120° - градусная мера противолежащих углов ромба второй пары
ответ: 60°, 120°, 60°, 120°
Если диагональ ромба равна его стороне, то треугольник образованный этой диагональю и двумя сторонами ромба равносторонний, следовательно все углы в нем по 60 градусов, значит 2 противолежащих угла в этом ромбе по 60 градусов, а другие два по (360(сумма углов в четырехугольнике) - (60 + 60)):2 = 120 градусов.
ответ: два угла по 60 градусов и два по 120 градусов.
В равностороннем треугольнике углы = 60° - угол при вершине ромба и ему противолежащий.
Сумма углов четырехугольника 360°.
360°- 60°- 60°= 240° - сумма противолежащих равных углов ромба
240°:2=120° - градусная мера противолежащих углов ромба второй пары
ответ: 60°, 120°, 60°, 120°
Если диагональ ромба равна его стороне, то треугольник образованный этой диагональю и двумя сторонами ромба равносторонний, следовательно все углы в нем по 60 градусов, значит 2 противолежащих угла в этом ромбе по 60 градусов, а другие два по (360(сумма углов в четырехугольнике) - (60 + 60)):2 = 120 градусов.
ответ: два угла по 60 градусов и два по 120 градусов.