В основании первой пирамиды лежит треугольник , в котором угол , , . Боковое ребро перпендикулярно плоскости основания пирамиды. Сечение пирамиды плоскостью, проходящей через середину ребра параллельно прямым и , является основанием второй пирамиды. Ее вершина - основание высоты треугольника .
Во сколько раз объём первой пирамиды больше объема второй пирамиды?
кратное 18 ---> оно делится на 2 и на 9
т.е. оно четное --- заканчивается на 0 или 2 или 4 или 6 или 8
и сумма цифр числа делится на 9 (это признак делимости на 9)))
получим варианты:
a b с d 0
a b с d 2
a b с d 4
a b с d 6
a b с d 8
и теперь второе условие: соседние цифры отличаются на 2
для первого варианта: a b с 2 0, a b 0 2 0 или a b 4 2 0
a+b+2 = 9 или a+b+4+2 = 9
a+b = 7 a+b = 3 ---> 12420, например
18 * 690 = 12420
но, первые цифры не на 2 отличаются... не получилось...
но смысл рассуждений такой же)))
пробуем еще...
у меня получилось:
24246 / 18 = 1347
можно попробовать и еще найти...
а) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за 2Х (т.к один больше другого в 2 раза). Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + 2Х = 180, 3Х = 180, Х = 60. Соответственно второй угол будет равен 120 градусам.
б) К примеру, возьмем параллелограмм АBCD. Угол А обозначим за Х, угол B за Х-24. Сумма углов одной стороны параллелограмма равна 180 градусам. Следовательно, Х + Х - 24 = 180. 2Х = 156. Х = 78. Следовательно, втрой угол будет равен 76-24 = 52.