В основании прямой призмы лежит равнобедренная трапеция, тупой угол
которой равен 120°. Диагональ трапеции является биссектрисой острого
угла. Диагональ призмы образует с основанием угол 45°. Меньшее
основание равно 4. V – объем призмы. Укажите нечетные делители
числа V.
1. ∠В=53°
2. ∠А=∠В=45°
4. ∠CАD=50°
Объяснение:
1.
Дано:
ΔАВС - прямоугольный, ∠С=90°
∠А=37°
Найти:
∠В-?град.
По Теореме, сумма углов треугольника равна 180°. Найдём градусную меру ∠В:
1)180°-(37°+90°)=53°
2.
Дано:
ΔАСВ-прямоугольный, ∠С=90°
СА=СВ
Найти:
∠А - ?град.
∠В - ?град.
ΔАСВ - равнобедренный. По Теореме, в равнобедренном треугольнике углы при основании равны. По Теореме, сумма углов треугольника равна 180°. Найдём градусную меру ∠А и ∠В:
(180°-90°):2=45°
4.
Дано:
ΔСВА - прямоугольный, ∠В=90°
СD - биссектриса
∠CDB=70°
Найти:
∠CАD - ?град.
РЕШЕНИЕ
Рассмотрим ΔCBD. Он прямоугольный.
По Теореме, сумма углов треугольника равна 180°. Найдём ∠BCD:
1)180°-(90°+70°)=20°
Рассмотрим ΔАCD. Так как CD - это биссектриса, то ∠BCD=∠АCD=20°
По Теореме, сумма смежных углов равна 180°. Найдём ∠CDА:
2)180°-70°=110°
По Теореме, сумма углов треугольника равна 180°. Найдём ∠CАD:
3)180°-(20°+110°)=50°
2. М = 58, Т - 32
8. 19
14.
20. В = 65, А - 25
26. А = 24, С = 66
Объяснение:
2. Сначала находим часть угла К = 90 - 32 = 58. Затем в нижнем треугольнике: 180 - 90 - 58 = 32. Затем верхний угол: 180 - 90 - 32 = 58
8. Косинус 60 градусов (отношение прилежащего катета к гипотенузе): 1/2. Значит, 1/2 = х/38⇒ х = 19
14. Нет вопроса. Непонятно, что надо найти.
20. На рисунке показано, что отрезок СС1 делит угол пополам, значит, каждый из них равен 90/2=45. Угол В = 180 - 70 - 45 = 65. Угол А = 180 - 65 - 90 = 25
26. Плохо видно рисунок. Примем отрезок ВК за биссектрису. 21 - градусная мера угла между биссектрисой и высотой. Определим углы, которые образует биссектриса на стороне АС. Угол KLB = 90, угол LBK = 21, значит угол BKL = 180 - 21 -90 = 69, а угол BKA = 180 - 69 = 111.
Отсюда угол А = 180 - 45 - 111 = 24, а угол С = 180 - 24 -90 = 66