В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Kamilla1351
Kamilla1351
26.02.2022 07:57 •  Геометрия

В основе конуса проведено хорду длиной 8√2 см на расстоянии 4 см от центра основы. Найдите объем конуса если его образующая наклонена к плоскости основы под углом 60°

Показать ответ
Ответ:
Дариа9636
Дариа9636
07.07.2021 20:39

Объяснение:

Обём конуса равен V=1/3пR^2H.Из центра проведем отрезки к концам хорды.Получим равнобедренный треугольник,т.к радиусы окружности равны,а значит отрезок соединяющий хорду с центром основания конуса является и высатой и медианой.От сюда следует,что данный отрезок делит полученный равнобедренный треугольник на два равных прямоугольных треугольников,а так же делит хорду пополам, и её половина равна 4корень из2.Тогда по теореме Пифагора найдём радиус:R=V16+32=V48=4V3. Образующая радиус и высота конуса образуют прямоугольный треугольник.Из етого треугольника найдём высоту H=R*tg60=4V3*V3=12см.Теперь найдём обём:V=1/3*п*48*12=192п см^3

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота