Ортоцентр H треугольника ABC отразили относительно сторон и получили точки A₁, B₁ и C₁. Найдите углы треугольника A′B′C′, если ∠A=50∘, ∠B=75∘.
Объяснение:
По свойству ортоцентра : "Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности". Значит все точки А, В, С,A₁, B₁ , C₁-лежат на окружности.
1)ΔАВМ -прямоугольный ,∠А=50°⇒ ∠АВМ=90°-50°=40° . Значит ∠МВС=75°-40°=35° .Поэтому дуги ∪ АВ₁=80° и ∪ В₁С=70° по т. о вписанном угле.
2)ΔАСР -прямоугольный ,∠А=50°⇒ ∠АСР=90°-50°=40° . Значит ∠РСВ=55°-40°=15° .Поэтому дуги ∪ АС₁=80° и ∪ С₁В=30° по т. о вписанном угле.
3)ΔАВК -прямоугольный ,∠В=75°⇒ ∠ВАК=90°-75°=15° . Значит ∠САК=50°-15°=35° .Поэтому дуги ∪ СА₁=70° и ∪ А₁В=30° по т. о вписанном угле.
)ΔА₁В₁С₁ , по т. о вписанном угле : ∠А₁=1/2*(80°+80)°=80° ,∠В₁=1/2*(30°+30)°=30° , ∠С₁=1/2*(70°+70)°=70°.
1) об'єм піраміди дорівнює тритині добутку площі основи на висоту піраміди. а) знахдимо площу трикутника: корінь (21*(21-13)(21-14)(21-15)), де 21 -- це півпериметр площа дорівнює 84 см квадратних. б) знаходимо висоту ОД піраміди. Оскільки двогранні кути при кожному ребрі основи піраміди рівні між собою, то точка Д, що лежить на основі піраміди, співпадає з центром вписаного кола трикутника-основи. Радіус цього кола дорівнює відношенню площі трикутника до його півпериметра, і дорівнює 4см. Якщо на малюнку піриміди вказати цей радіус вписаного кола відрізком ДК, а точку К з'єднати з вершиною піраміди, то отримаємо прямокутний трикутник ДКО, де ДО висота піраміди, ДК дорівнює 4см, а кут ДКО дорівнює 45град за умовою задачі. Звідси зханодимо висоту. Т. я. прямокутний трикутник ДОК при основі ОК має один з кутів, що дорівнює 45 град, то за теоремою суми кутів трикутника, визначаємо, що інший кут при основі ОК також дорівнює 45град. Значить трикутник ДОК є прямокутним рівнобедренним трикутником, а значить катети ДО та ДК рівні між собою, і дорівнюють 4см Тоді об'єм піраміди дорівнює 112см кубічних 2) ця задача розв'язується МАЙЖЕ так само.
Ортоцентр H треугольника ABC отразили относительно сторон и получили точки A₁, B₁ и C₁. Найдите углы треугольника A′B′C′, если ∠A=50∘, ∠B=75∘.
Объяснение:
По свойству ортоцентра : "Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности". Значит все точки А, В, С,A₁, B₁ , C₁-лежат на окружности.
1)ΔАВМ -прямоугольный ,∠А=50°⇒ ∠АВМ=90°-50°=40° . Значит ∠МВС=75°-40°=35° .Поэтому дуги ∪ АВ₁=80° и ∪ В₁С=70° по т. о вписанном угле.
2)ΔАСР -прямоугольный ,∠А=50°⇒ ∠АСР=90°-50°=40° . Значит ∠РСВ=55°-40°=15° .Поэтому дуги ∪ АС₁=80° и ∪ С₁В=30° по т. о вписанном угле.
3)ΔАВК -прямоугольный ,∠В=75°⇒ ∠ВАК=90°-75°=15° . Значит ∠САК=50°-15°=35° .Поэтому дуги ∪ СА₁=70° и ∪ А₁В=30° по т. о вписанном угле.
)ΔА₁В₁С₁ , по т. о вписанном угле : ∠А₁=1/2*(80°+80)°=80° ,∠В₁=1/2*(30°+30)°=30° , ∠С₁=1/2*(70°+70)°=70°.
а) знахдимо площу трикутника: корінь (21*(21-13)(21-14)(21-15)), де 21 -- це півпериметр
площа дорівнює 84 см квадратних.
б) знаходимо висоту ОД піраміди. Оскільки двогранні кути при кожному ребрі основи піраміди рівні між собою, то точка Д, що лежить на основі піраміди, співпадає з центром вписаного кола трикутника-основи. Радіус цього кола дорівнює відношенню площі трикутника до його півпериметра, і дорівнює 4см.
Якщо на малюнку піриміди вказати цей радіус вписаного кола відрізком ДК, а точку К з'єднати з вершиною піраміди, то отримаємо прямокутний трикутник ДКО, де ДО висота піраміди, ДК дорівнює 4см, а кут ДКО дорівнює 45град за умовою задачі. Звідси зханодимо висоту. Т. я. прямокутний трикутник ДОК при основі ОК має один з кутів, що дорівнює 45 град, то за теоремою суми кутів трикутника, визначаємо, що інший кут при основі ОК також дорівнює 45град. Значить трикутник ДОК є прямокутним рівнобедренним трикутником, а значить катети ДО та ДК рівні між собою, і дорівнюють 4см
Тоді об'єм піраміди дорівнює 112см кубічних
2) ця задача розв'язується МАЙЖЕ так само.