В параллелограме ABCD точка M делит сторону BC пополам, а точка N делит сторону DC пополам. Вектор AM примите за букву m, а вектор AN за букву n. Выразите вектор AC, используя вектора m и n.
Это как бы достаточно классическая задача. А такая пирамида называется тетраэдр. Правильная пирамида. Очень правильная.
Назови вершины банальными буквами ABCD. Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней. Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2. Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2. Теорема Пифагора нам тут имеем: х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате); х = а * корень ( 2) / 2.
Однородный шар диаметром 5 см имеет массу 500 граммов. Чему равна масса шара, изготовленного из того же материала, с диаметром 3 см? ответ дайте в граммах.
Задача В13 (1806)
Решение
Для решения данной задачи необходимо знать формулу для нахождения плотности тела:
Плотность равна отношению массы тела к его объему:
Р = m / V
Выразим из формулы для нахождения плотности массу:
m = P · V
Обратите внимание на то, что плотность тел из одинакового материала равна.
Так же для решения задачи нужно знать формулу для нахождения объема шара:
V = 4/3πR2 = 4/3π(D/2)2
Запишем, чему равна масса для первого шара:
m1 = P · V1 = P · 4/3π(D1)2 = P · 4/3 ·π · 2,5 2 = 25/3 · P · π = 500 грамм
Выразим из массы первого шара P · π:
25/3 · P · π = 500
P · π = 500 : (25/3) = 60
Запишем, чему равна масса для второго шара:
m2 = P · V2 = P · 4/3π(D2) 2 = P · 4/3 ·π · 1,52 = 3 · P · π =3 · 60 = 180 граммов масса второго шара (с диаметром 3 см).
Назови вершины банальными буквами ABCD.
Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней.
Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2.
Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2.
Теорема Пифагора нам тут имеем:
х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате);
х = а * корень ( 2) / 2.
Такой получается ответ.
Условие
Однородный шар диаметром 5 см имеет массу 500 граммов. Чему равна масса шара, изготовленного из того же материала, с диаметром 3 см? ответ дайте в граммах.
Задача В13 (1806)
Решение
Для решения данной задачи необходимо знать формулу для нахождения плотности тела:
Плотность равна отношению массы тела к его объему:
Р = m / V
Выразим из формулы для нахождения плотности массу:
m = P · V
Обратите внимание на то, что плотность тел из одинакового материала равна.
Так же для решения задачи нужно знать формулу для нахождения объема шара:
V = 4/3πR2 = 4/3π(D/2)2
Запишем, чему равна масса для первого шара:
m1 = P · V1 = P · 4/3π(D1)2 = P · 4/3 ·π · 2,5 2 = 25/3 · P · π = 500 грамм
Выразим из массы первого шара P · π:
25/3 · P · π = 500
P · π = 500 : (25/3) = 60
Запишем, чему равна масса для второго шара:
m2 = P · V2 = P · 4/3π(D2) 2 = P · 4/3 ·π · 1,52 = 3 · P · π =3 · 60 = 180 граммов масса второго шара (с диаметром 3 см).
ответ: 180 граммов