В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и <ACD=169. Найдите меньший угол между диагоналями параллелограмма. ответ дайте в градусах.
Котангенсом угла (ctg α ) в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.
Тангенсом называется отношение противолежащего катета к прилежащему.
Если прилежащий катет равен 9, то противолежащий - 40.
Катеты 9 и 40 - из пифагоровых троек (Пифагоровыми тройками чисел называются числа, равные длинам сторон прямоугольного треугольника и удовлетворяющие формуле Пифагора. Причем, не существует пифагоровых троек, для которых гипотенуза и один из катетов являются катетами другой пифагоровой тройки). Поэтому для данного сочетания катетов гипотенуза равна 41 ( проверьте по т.Пифагора).
Итак, если ctg α=9/40, то тангенс - число, обратное данному, т.е. tg α =40/9.
Синус - отношение противолежащего катета к гипотенузе:
sin α=40/41,
соответственно косинус угла = отношение прилежащего катета к кипотенузе:
tg α =40/9.
sin α=40/41
cos α=9/41.
Объяснение (подробно):
Котангенсом угла (ctg α ) в прямоугольном треугольнике называется отношение прилежащего катета к противолежащему.
Тангенсом называется отношение противолежащего катета к прилежащему.
Если прилежащий катет равен 9, то противолежащий - 40.
Катеты 9 и 40 - из пифагоровых троек (Пифагоровыми тройками чисел называются числа, равные длинам сторон прямоугольного треугольника и удовлетворяющие формуле Пифагора. Причем, не существует пифагоровых троек, для которых гипотенуза и один из катетов являются катетами другой пифагоровой тройки). Поэтому для данного сочетания катетов гипотенуза равна 41 ( проверьте по т.Пифагора).
Итак, если ctg α=9/40, то тангенс - число, обратное данному, т.е. tg α =40/9.
Синус - отношение противолежащего катета к гипотенузе:
sin α=40/41,
соответственно косинус угла = отношение прилежащего катета к кипотенузе:
cos α=9/41.
ВС = 15см
L = 23,5см.
Объяснение:
В условии явная описка: "AB-CD = 7 см, DC - AB = 3 см" - АВ не может быть одновременно и больше CD и меньше CD (СD = DС).
Принимаем условие таким:
AD = 32 см, AB-CD = 7 см, ВC - AB = 3 см.
АВ - CD =7 => AB = 7+CD. (1)
BC - AB = 3 (дано) (2). Подставим в (1) в )2):
ВС - 7 - CD =3, => BC = 10 + CD.
AD = AB+BC+CD = (7+CD) + (10+CD) + CD = 32см (дано) =>
3*СD = 15 => CD = 5см. Тогда
АВ = 12см (из 1), CD = 5см
ВС = AD - AB - CD = 32-12-5 = 15 см.
Расстояние между серединами отрезков АВ и CD равно:
(1/2)*АВ + ВС + (1/2)CD = 6+15+2,5 = 23,5см.