Этот интерфейс меня добьет. Я набираю комментарий, и он НЕ отображается. Ладно, продублирую в решении. Это условие - неверное. Пусть М - точка пересечения заданной биссектрисы с искомой стороной. Если продлить биссектрису за М на 8, и с центром в полученной точке построить окружность радиуса 12 (эта окружность пройдет через заданную точку пересечения биссектрис), то искомой стороной может быть ЛЮБАЯ хорда построенной окружности, проходящая через точку М.
Можно всё это строго доказать, но для доказательства НЕВЕРНОСТИ САМОЙ ПОСТАНОВКИ ЗАДАЧИ достаточно увидеть, что это построение верно в 2 случаях 1. треугольник равнобедренный, сторона равна 8√5 (это 2√(12^2 - 8^2)) 2. вырожденный треугольник, когда угол, который биссектриса делит пополам, равен 0. Тогда сторона равна 24 - диаметру построенной окружности. В общем случае сторона может принимать значения в промежутке между 8√5 и 24.
Вписать окр-ть можно только в равнобедр трапецию. Тогда ее высота будет = диаметру окр-ти, т.е. 12*2=24см. Рассмотрим прямоуголь треугольник, у которого один катет - это высота трапеции, а второй катет - это кусочек нижнего основания, гипотенуза - боковая сторона. По теореме Пифагора второй катет(кусочек нижнего основания) = корень из (625-576)=7. В этой трапеции два таких треуголь, соответственно, и два таких катета-кусочка, т.е. в нижнем основании уже знаем часть 14, осавшаяся часть между этими кусочквами равна верхнему основанию, примем их за Х. Есть такая теорема: Если в 4-угольник вписана окр-ть, то суммы противополож сторон 4-угольника равны. Тогда: боковая сторона1 + боковая сторона2=верхнее основание + нижнее основание. Сумма бок сторон =50. Сумма оснований равна Х+ (Х+ 7+7)=2Х+14. откуда Х=18. Верхнее основание -18, нижнее 18+7+7=32
Это условие - неверное.
Пусть М - точка пересечения заданной биссектрисы с искомой стороной. Если продлить биссектрису за М на 8, и с центром в полученной точке построить окружность радиуса 12 (эта окружность пройдет через заданную точку пересечения биссектрис), то искомой стороной может быть ЛЮБАЯ хорда построенной окружности, проходящая через точку М.
Можно всё это строго доказать, но для доказательства НЕВЕРНОСТИ САМОЙ ПОСТАНОВКИ ЗАДАЧИ достаточно увидеть, что это построение верно в 2 случаях
1. треугольник равнобедренный, сторона равна 8√5 (это 2√(12^2 - 8^2))
2. вырожденный треугольник, когда угол, который биссектриса делит пополам, равен 0. Тогда сторона равна 24 - диаметру построенной окружности.
В общем случае сторона может принимать значения в промежутке между 8√5 и 24.