В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
Дано:
∆АВС - прямоугольный.
ВЕ - биссектриса.
∠А = 30°
ВЕ = 6 см
Найти:
∠ВЕА; СЕ; АС
Решение.
Сумма углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВС = 1/2АВ
∠ЕВА = ∠ЕВС = 60 ÷ 2 = 30° (т.к. ВЕ - биссектриса)
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> СЕ = 1/2ВЕ = 6 ÷ 2 = 3 см.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВЕС = 90 - 30 = 60°
СУММА СМЕЖНЫХ УГЛОВ РАВНА 180°
=> ∠ВЕА = 180 - 60 = 120°
∠В = ∠А = 30°
=> ∆АЕВ - равнобедренный.
=> ЕВ = ЕА = 6 см, по свойству равнобедренного треугольника.
СА = 3 + 6 = 9 см
ответ: 120°; 9 см; 3 см.
(МН·РН) = 4 ед.
(ОР·РК) = -2 ед.
Объяснение:
В прямоугольнике противоположные стороны равны =>
вектора МН = РК.
∠ РОК = 180° - 120° = 60° ( смежные углы).
В прямоугольнике диагонали равны и точкой пересечения делятся пополам =>
Треугольник РОК равносторонний, так как
ОК=ОР и ∠ РОК = 60°). => ОР = ОК = РК = 2 ед.
ОН=ОР = 2 ед. РН = 4 ед.
Скалярное произведение векторов можно записать так:
a·b=|a|·|b|c·сosα.
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Совместим начала векторов ОР и РК в точке О. Тогда угол между векторами ОР и ОК' (вектора ОК и ОК' равны) равен 120°.
Векторное произведение указанных в условии векторов:
(МН·РН) = (РК·РН) = 2·4·Cos60° = 4 ед.
(ОР·РК) = 2·2·Cos120° = -2 ед.