В правильной шестиугольной призме АВСТЕНА1В1С1T1E1H1, все ребра которой равны, найдите угол между плоскостью основания и прямой, проходящей через середины AB и H1T.
Через середины сторон равностороннего треугольника можно провсти только одну окружность - вписанную в этот треугольник. Для того чтобы найти ее радиус надо решить прямоугольный треугольник малым катетом которого является искомый радиус OD, большим катетом AD является половина стороны равностороннего треугольника 8√3/2 = 4√3, гипотенузой - отрезок AO от вершины равностороннего треугольника A до центра вписанной окружности, с углом DAO равным половине 60 градусов то есть 30 градусов. Вот и считаем: AO = AD/cos(30) = 4√3/(√3/2) = 8, OD = AO*sin(30) = 8/2 = 4 Радиус искомой окружности равен 4
Вот и считаем:
AO = AD/cos(30) = 4√3/(√3/2) = 8,
OD = AO*sin(30) = 8/2 = 4
Радиус искомой окружности равен 4
Дана правильная треугольная пирамида со стороной основания 8 и высотой 10.
Высота основания h = a*cos30° = 8*√3/2 = 4√3.
Проекция апофемы на основание правильной треугольной пирамиды равна h/3 = 4√3/3.
Находим апофему А = √(Н² + (h/3)²) = √(100 + (48/9)) = √948/3 = 2√237/3.
Находим площадь боковой поверхности:
Sбок = (1/2)РА = (1/2)*(3*8)*(2√237/2) = 8√237 ≈ 123,1584 кв.ед.
Площадь основания So = a²√3/4 = 64√3/4 = 16√3 ≈ 27,71281 кв.ед.
Полная поверхность S = So + Sбок = 16√3 + 8√237 ≈ 150,8712 кв.ед.
Объём V = (1/3)SoH = (1/3)*16√3*10 = 160√3/3 ≈ 92,3760 куб.ед.