В правильной треугольной призме основанием которой является равносторонний треугольник со стороной 10 см. Высота призмы составляет 20 см. Найдите площадь полной боковой поверхности призмы.
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
Объяснение:
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
1. В прямоугольном треугольнике сумма острых углов равна 90°.
Сумма углов в треугольнике равна 180°. В прямоугольном треугольнике есть прямой угол, равный 90°. 180° - 90° = 90° -- сумма оставшихся двух острых углов.
2. В прямоугольном треугольнике если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.
Это теорема об угле в 30° в прямоугольном треугольнике.
3. Один из острых углов прямоугольного треугольника в 2 раза больше другого. Острые углы этого треугольника равны 60° и 30°
В прямоугольном треугольнике сумма острых углов равна 90°. Пусть x градусов -- меньший острый угол, тогда 2x градусов -- больший, имеем
x + 2x = 90
3x = 90
x = 30° -- меньший острый угол
2x = 60° -- больший острый угол
4. Один из углов прямоугольного треугольника на 18° больше другого. Углы треугольника равны 1) 90°, 36°, 54°; 2) 90°, 72°, 18°
Задача имеет два ответа.
Треугольник прямоугольный ⇒ один из углов равен 90°
1 случай. Один острый угол больше другого на 18°.
Пусть x градусов -- меньший острый угол, тогда (x + 18) градусов -- больший, имеем
x + (x + 18) = 90
2x + 18 = 90
2x = 72
x = 36° -- первый острый угол
x + 18 = 54° -- второй острый угол
2 случай. Острый угол на 18° меньше, чем прямой угол (больше нельзя, так как в прямоугольном треугольнике нет тупых углов), тогда
90° - 18° = 72° -- величина первого острого угла
Так как сумма острых углов прямоугольного треугольника равна 90°, то найдём второй острый угол:
90° - 72° = 18°
В прямоугольном треугольнике сумма острых углов равна 90°. Пусть x градусов -- меньший острый угол, тогда 2x градусов -- больший, имеем
x + 2x = 90°
3x = 90°
x = 30° -- меньший острый угол
2x = 60° -- больший острый угол
5. Существует ли треугольник с двумя прямыми углами? Нет.
Предположим, что такой треугольник существует. Тогда по теореме о сумме углов треугольника третий угол будет равен 0°, что невозможно для треугольника. Значит предположение неверное.
6. Сторона прямоугольного треугольника, лежащая против большего угла -- это гипотенуза.
У прямоугольного треугольника есть своя терминология. Стороны называются катетами и гипотенузами. Последняя лежит напротив прямого угла (он же наибольший в треугольнике).
7. В прямоугольном треугольнике один из острых углов равен 30°, а противолежащий ему катет равен 6 см. Гипотенуза равна 12 см.
Воспользуемся теоремой об угле в 30° в прямоугольном треугольнике. По ней, катет, лежащий напротив угла 30°, в два раза меньше гипотенузы, то есть гипотенуза в 2 раза больше катета:
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
Объяснение:
At the beginning of the day, Margaret had 72 ice cream cones. By noon, she had $\frac{2}{3}$ as many cones as she had at the beginning of the day. By the end of the day, she only had $\frac{2}{3}$ as many cones as she had at noon. How many ice cream cones does she have at the end of the day?
1. В прямоугольном треугольнике сумма острых углов равна 90°.
Сумма углов в треугольнике равна 180°. В прямоугольном треугольнике есть прямой угол, равный 90°. 180° - 90° = 90° -- сумма оставшихся двух острых углов.
2. В прямоугольном треугольнике если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.
Это теорема об угле в 30° в прямоугольном треугольнике.
3. Один из острых углов прямоугольного треугольника в 2 раза больше другого. Острые углы этого треугольника равны 60° и 30°
В прямоугольном треугольнике сумма острых углов равна 90°. Пусть x градусов -- меньший острый угол, тогда 2x градусов -- больший, имеем
x + 2x = 90
3x = 90
x = 30° -- меньший острый угол
2x = 60° -- больший острый угол
4. Один из углов прямоугольного треугольника на 18° больше другого. Углы треугольника равны 1) 90°, 36°, 54°; 2) 90°, 72°, 18°
Задача имеет два ответа.
Треугольник прямоугольный ⇒ один из углов равен 90°
1 случай. Один острый угол больше другого на 18°.
Пусть x градусов -- меньший острый угол, тогда (x + 18) градусов -- больший, имеем
x + (x + 18) = 90
2x + 18 = 90
2x = 72
x = 36° -- первый острый угол
x + 18 = 54° -- второй острый угол
2 случай. Острый угол на 18° меньше, чем прямой угол (больше нельзя, так как в прямоугольном треугольнике нет тупых углов), тогда
90° - 18° = 72° -- величина первого острого угла
Так как сумма острых углов прямоугольного треугольника равна 90°, то найдём второй острый угол:
90° - 72° = 18°
В прямоугольном треугольнике сумма острых углов равна 90°. Пусть x градусов -- меньший острый угол, тогда 2x градусов -- больший, имеем
x + 2x = 90°
3x = 90°
x = 30° -- меньший острый угол
2x = 60° -- больший острый угол
5. Существует ли треугольник с двумя прямыми углами? Нет.
Предположим, что такой треугольник существует. Тогда по теореме о сумме углов треугольника третий угол будет равен 0°, что невозможно для треугольника. Значит предположение неверное.
6. Сторона прямоугольного треугольника, лежащая против большего угла -- это гипотенуза.
У прямоугольного треугольника есть своя терминология. Стороны называются катетами и гипотенузами. Последняя лежит напротив прямого угла (он же наибольший в треугольнике).
7. В прямоугольном треугольнике один из острых углов равен 30°, а противолежащий ему катет равен 6 см. Гипотенуза равна 12 см.
Воспользуемся теоремой об угле в 30° в прямоугольном треугольнике. По ней, катет, лежащий напротив угла 30°, в два раза меньше гипотенузы, то есть гипотенуза в 2 раза больше катета:
6 * 2 = 12 см
8. Углы равнобедренного прямоугольного треугольника равны 90°, 45°, 45°.
Треугольник прямоугольный ⇒ один из углов равен 90°.
Треугольник равнобедренный, значит острые углы равны. В сумме они дают 90°. Пусть x градусов -- острый угол такого треугольника, тогда
x + x = 90°
2x = 90°
x = 45° -- острые углы треугольника
9. В треугольнике АВС ∠С = 90°, ∠В = 60°, СВ = 6 см, тогда AB = 12 см.
Найдём угол A: ∠A = 90° - ∠B = 90° - 60° = 30°
Воспользуемся теоремой об угле в 30°: AB = 2CB = 2 * 6 = 12 см
10. В ΔАВС ∠С = 90°, АВ = 15 см, СВ = 7,5 см, тогда ∠В = 60°.
∠A лежит напротив стороны CB, при этом 2CB = AB ⇒ по теореме об угле в 30° ∠A = 30°
Сумма острых углов 90° ⇒ ∠B = 90° - ∠A = 60°