В правильной усеченной четырехугольной пирамиде апофема равна 7дм, ребро верхнего основания равно 3дм, ребро нижнего основания равно 5дм. Найти площадь полной поверхности усеченной пирамиды.
Если мы продлим радиус OA до точки пересечения с окружностью с радиусом OB (пусть он пересекает эту окружность в точке C), то A окажется средней точкой OC, потому что радиус OA = 2, а радиус OC = 4. OC/2 = 4/2 = 2. Значит, AB - медиана треугольника ACO. OB = OC, потому что это радиусы большей окружности. Значит, треугольник BCO равнобедренный, поэтому углы при основании равны. Сумма углов треугольника равна 180, а третий угл нам дан по условию. Найдём два оставшихся.
x = (180 - 60)/2 = 120/2 = 60
Значит все углы по 60 градусов, значит, треугольник равносторонний, значит медиана AB также является биссектрисой и высотой, значит, ABO - прямоугольный треугольник с прямым углом B, значит, мы можем найти AB по теореме Пифагора:
Если мы продлим радиус OA до точки пересечения с окружностью с радиусом OB (пусть он пересекает эту окружность в точке C), то A окажется средней точкой OC, потому что радиус OA = 2, а радиус OC = 4. OC/2 = 4/2 = 2. Значит, AB - медиана треугольника ACO. OB = OC, потому что это радиусы большей окружности. Значит, треугольник BCO равнобедренный, поэтому углы при основании равны. Сумма углов треугольника равна 180, а третий угл нам дан по условию. Найдём два оставшихся.
x = (180 - 60)/2 = 120/2 = 60
Значит все углы по 60 градусов, значит, треугольник равносторонний, значит медиана AB также является биссектрисой и высотой, значит, ABO - прямоугольный треугольник с прямым углом B, значит, мы можем найти AB по теореме Пифагора:
AB = √(OB^2 - AO^2)
AB = √(4^2 - 2^2)
AB = √(16 - 4)
AB = √(12)
AB = √(4 * 3)
AB = 2√3
Верхний четырёхугольник рис.6,(слева буквы не видно,обозначим её Х):
ХО=МN (по условию),
OM=XN (по условию),
ОN=ON (общая сторона),
следовательно:
треуг.ОХN=треуг.ОМN по 3 признаку равенства треугольников (по 3-м сторонам).
2) рис.7
<АВF= <PFB (по условию),
<AFB= < PBF (по условию),
ВF= BF (общая сторона),след-но:
тр.АВF= тр.РВF по 2 признаку равенства треугольников (по стороне и 2-м ,прилежащим к ней углам)
3) рис.9.а)
<А= <В - след-но треуг-к МВА-равнобедренный и
МВ=МА
<МВD=180°- <В (cмежные
<MAC=180° - <A углы),след-но:
<МВD=<MAC (т.к <А = <В),
DB=AC ( по условию) , след-но:
тр.МВD = тр MAC по 1 признаку равенства треугольников (по 2-м сторонам и углу между ними)
б)продолжение прикреплю.