Основные черты растительности тундры: отсутствие древесного яруса, большая роль низкорослых мелкодревесных долгоживущих, часто вечнозелёных растений – от кустарников и стлаников до стелющихся кустарничков и стланичков. Растут тундровые растения очень долго – у полярной ивы побеги удлиняются за год на 1–5 мм и дают только по 2–3 листа, а лишайники нарастают всего на 1–3 мм за год. Этим объясняется чрезвычайная ранимость тундр. Широко распространены травянистые многолетники (корневищные, кочкообразующие, подушковидные) с укороченными стеблями, кустарнички с деревянистыми стеблями: голубика, черника, брусника и карликовые ивы и берёзки. Двудольные травянистые растения имеют крупные, яркоокрашенные цветы, зацветают практически одновременно, превращая некоторые участки тундры в гигантские цветочные клумбы. Большинство тундровых видов растений характеризуется максимальной активностью в данной зоне, составляя арктический элемент флоры. Велико значение мхов и лишайников, образующих типичные для тундр сообщества с мелкодревесными растениями. Возраст накипных лишайников исчисляется сотнями и даже тысячами лет.
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².