В программе АВСD угол А равен 60° Высота ВЕ делит сторону АD на две равные части. Найдите длину диагонали ВD, если периметр параллелограмма равен 48 см
Док-ть: АD + СВ = АВ Решение. Продолжим стороны ВС И АD от точек С и D до пересечения в точке О. Полученный Δ АОВ – равносторонний, т.к. ∠DАВ = ∠АВС = 60° по условию, значит, и ∠АОВ = 180° – 60° – 60° = 60°. Из равенства углов следует равенство сторон: АВ = ОВ = АО Рассмотрим ΔАВС и ΔВОD; ∠АВС = ∠ВОD = 60°; ∠САВ = ∠СВD по условию, стороны между углами также равны: АВ = ОВ. ⇒ ΔАВС = ΔВОD Из равенства треугольников следует: CВ = ОD Но АО = ОD + АD, заменив АО на АВ, а ОD на СB получим: АВ = CВ + АD, что и требовалось доказать!
График функции y=x^2+x-6 это парабола ветвями вверх. а)найдите по графику функции промежутки,в которых y>0 и y<0. Для этого надо определить точки на оси ОХ, в которых график эту ось пересекает. Приравниваем квадратный трёхчлен нулю. x²+x-6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=1²-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√25-1)/(2*1)=(5-1)/2=4/2=2; x₂=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
На промежутке (-3;2) график проходит ниже оси ОХ - там значения у отрицательные. На промежутках (-∞;-3) и (2;+∞) значения у положительные. б)не выполняя дополнительных построений ,найдите координаты точек пересечения данного графика с графиком функции y=2x-4. Для этого надо приравнять функции: x²+x-6 = 2х-4. Получаем квадратный уравнение: х²-х-2 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-1)^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√9-(-1))/(2*1)=(3-(-1))/2=(3+1)/2=4/2=2; у = 2*2-4 = 0;x₂=(-√9-(-1))/(2*1)=(-3-(-1))/2=(-3+1)/2=-2/2=-1. у = 2*(-1)-4 = -6. Получили 2 точки: (2;0) и (-1;-6).
∠DАВ = ∠АВС = 60° ;
∠САВ = ∠СВD
Док-ть: АD + СВ = АВ Решение.Продолжим стороны ВС И АD от точек С и D до пересечения в точке О. Полученный Δ АОВ – равносторонний, т.к. ∠DАВ = ∠АВС = 60° по условию, значит, и ∠АОВ = 180° – 60° – 60° = 60°.
Из равенства углов следует равенство сторон: АВ = ОВ = АО
Рассмотрим ΔАВС и ΔВОD; ∠АВС = ∠ВОD = 60°; ∠САВ = ∠СВD по условию, стороны между углами также равны: АВ = ОВ. ⇒
ΔАВС = ΔВОD
Из равенства треугольников следует: CВ = ОD
Но АО = ОD + АD, заменив АО на АВ, а ОD на СB получим:
АВ = CВ + АD, что и требовалось доказать!
Решение с рисунком дано в приложении.
а)найдите по графику функции промежутки,в которых y>0 и y<0.
Для этого надо определить точки на оси ОХ, в которых график эту ось пересекает.
Приравниваем квадратный трёхчлен нулю.
x²+x-6 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=1²-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√25-1)/(2*1)=(5-1)/2=4/2=2; x₂=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
На промежутке (-3;2) график проходит ниже оси ОХ - там значения у отрицательные.
На промежутках (-∞;-3) и (2;+∞) значения у положительные.
б)не выполняя дополнительных построений ,найдите координаты точек пересечения данного графика с графиком функции y=2x-4.
Для этого надо приравнять функции:
x²+x-6 = 2х-4.
Получаем квадратный уравнение:
х²-х-2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-1)^2-4*1*(-2)=1-4*(-2)=1-(-4*2)=1-(-8)=1+8=9;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√9-(-1))/(2*1)=(3-(-1))/2=(3+1)/2=4/2=2; у = 2*2-4 = 0;x₂=(-√9-(-1))/(2*1)=(-3-(-1))/2=(-3+1)/2=-2/2=-1. у = 2*(-1)-4 = -6.
Получили 2 точки: (2;0) и (-1;-6).